Development of a Prototype Atomic Clock to Observe and Characterize Coherent Population Trapping

Nathan Belcher Charles Center Science Symposium 2.22.08

Acknowledgements

Irina Novikova
Eugeniy Mikhailov
Charles Center

Outline

Motivation

- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Motivation

- Two companies and National Institute of Standards and Technology have created sub-cubic centimeter atomic clocks
- We want to create a prototype atomic clock to emulate their clocks and find ways to improve the performance

Our Goal

- Stable lasing on rubidium transition
 - Two locking systems
- Modulation of laser in rf regime
 - Crystal oscillator
- Observe Coherent Population Trapping (CPT) in rubidium vapor cell
- Study, characterize, optimize CPT

Outline

- Motivation
- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Background continued

- Lambda system requires two electromagnetic fields at different frequencies
- Problem: inherent in lasers are small random shifts in frequency around a set frequency ("jumps")
 - Bigger problem: if two lasers are physically separate, the "jumps" are random

Background continued

- Solution: use phase modulation to create two fields out of one physical laser
 - Why? Both fields "jump" with each other so relative frequency can be set by external generator
 - Creates carrier with sideband comb

Background continued

- Use coherent population trapping to measure transmitted light
- The closer to hyperfine splitting resonance, the more transmission
- Counter locked to maximum transmission which corresponds to clock frequency

Outline

- Motivation
- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Hardware

VCSEL

Copper block with collimating tube inside

Hardware continued

Temperature stability

Collimating Tube and Laser

Reverse Voltage Protection LED

Hardware continued

Solenoid and shields

- External non-homogeneous fields that interact with vapor cell, shifting state frequencies
- Need to control field vapor cell feels, so surround cell with solenoid to produce constant homogeneous magnetic field and shields to limit outside magnetic fields

Hardware continued

Outline

- Motivation
- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Optical hardware

Absorption and differential spectra

- Electronics are used to amplify the raw signal from the optics and adjust the current to the laser accordingly
- Example: if laser's frequency is higher than zero point on raw signal, electronics will supply less current so frequency decreases

- Had issues before with locking the laser's frequency to the rubidium frequency
 - Now able to lock DAVLL to chosen resonance
- Developed procedure to lock DAVLL
- Still some issues with the offset of the balanced photodetectors

Outline

- Motivation
- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Crystal Oscillator

- Current controlled tunable crystal with frequencies ranging from 5.95 GHz to 7.15 GHz at 15 dBm
- Two constant current sources designed and built
 - One provides current to set crystal oscillator at 6.834 GHz
 - Other provides small current to tune to CPT resonance

Crystal Oscillator continued

Inside of crystal oscillator

Outline

- Motivation
- Background
- Hardware
- DAVLL
- Crystal Oscillator
- Results
- Future Work

Results

- VCSEL Modulation
 - With crystal oscillator, saw sidebands greater than carrier at 15 dBm at 6.834 GHz
- Achieved CPT with crystal oscillator

Crystal oscillator modulation

- Coherent population trapping (CPT)
 - Occurs when all electrons are driven to 'dark' state that does not interact with either electromagnetic field
 - Laser has 100% transmission

CPT in isotopically pure cell

- Locking of entire system
 - DAVLL to lock to optical resonance
 - crystal oscillator current controllers to lock to CPT

First recognition of clock locking

First attempt zoomed in

Results continued Second attempt at locking Frequency (KHz) 0 · 0 Time (Hours)

Third attempt at locking

Third attempt zoomed in

Frequency noise of the crystal oscillator

- The locking frequency has been repeatable each day to within 200 Hz
- If this clock could be locked for many years, it would lose .1 second per year
 - Not very good for atomic clocks, but better than the standard wristwatch

Outline

- Motivation
- Background
- Hardware
- DAVLL
- crystal oscillator
- Results
- Future Work

Future Work

Correct DAVLL drifting so that the system will lock for a longer period of time
 Characterize and optimize CPT