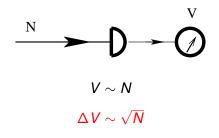
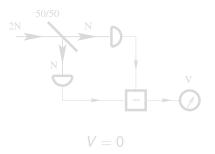
Quantum noise measurements: challenges and tricks

Eugeniy Mikhailov

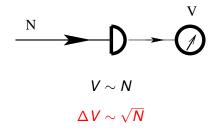

The College of William & Mary

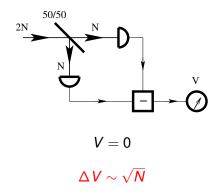
July 31, 2007 mini-conference


Outline

<ロ> (日) (日) (日) (日) (日)

Simple photodetector


Balanced photodetector


 $\Delta V \sim \sqrt{N}$

< 同 > < ∃ >

Simple photodetector

Balanced photodetector

< 同 > < ∃ >

Quantum Mechanics Properties:

•
$$\bar{N} = \langle \alpha | \hat{N} | \alpha \rangle = \langle \alpha | a^{\dagger} a | \alpha \rangle = \alpha^{2}$$

• $\Delta N = \sqrt{\langle \alpha | \hat{N}^{2} - \bar{N}^{2} | \alpha \rangle} = \alpha$
f $\alpha \to 0$

Classically

• Electric field $E = E_0 + \delta E$ • Intensity $I = E^2 = (E_0 + \delta E)^2 = E_0^2 + 2E_0\delta E + \delta E^2 \approx I_0 + 2\sqrt{I_0}\delta E$

•
$$I = I_0$$

• $\Delta I = 2\sqrt{I_0}\delta E$

- E - N

- In ideal world each photon generate an electron on a photodiode
- Photodiode measures intensity or photon number
- Photodiode output current (i) proportional to intensity (I)

So

$$i_o = \eta e rac{I_0 Area}{\hbar \omega} = \eta e rac{P}{\hbar \omega} = \eta 0.64 [A/W]P$$

Shot-noise

$$\Delta i \sim \Delta I = \sqrt{2 e i_o RBW}$$

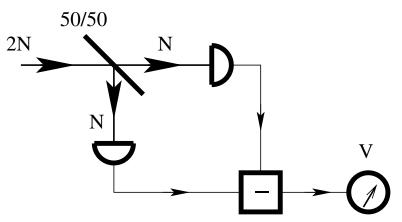
More about Shot Noise

 $i_o = \eta 0.64 [A/W] P$ $\Delta i \sim \Delta I = \sqrt{2ei_o RBW}$

Typical numbers:

- *P* = 1*mW*
- $\eta = 100 \%$
- *i*_o = .64*mA*

 $\Delta i = 14 \text{ pA} / \sqrt{Hz}$


- Typical Scope RBW=20 MHz, $\Delta i = 64$ nA
- We are aiming to RBW=100kHz, $\Delta i = 4.5$ nA

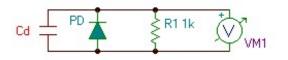
We are trying to resolve tenth of the inch on the top of the Empire State Building.

-∢ ∃ ▶

Measurement: step 1 kill DC current offset

Relatively easy with balanced photodetector

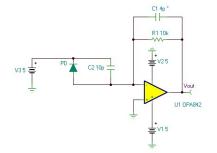
Watch out


- Matched quantum efficiency
- We need real 50/50 beam splitter

Eugeniy Mikhailov (W&M)

EIT applications to GW detection

Measurement: step 2 transform current to voltage

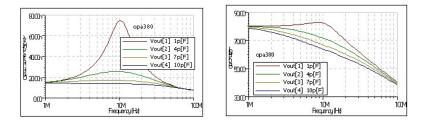

Very simple: Load resistor

- Cut off frequency is still $f_c = 1/(RC_d)$
- Current transimpedance gain $\frac{R_f}{1+jR_fC_{d\omega}}$,
- But Cd goes up as V goes up
 - the more gain we have the weaker response at high frequencies

Measurement: step 2 improved transform current to voltage

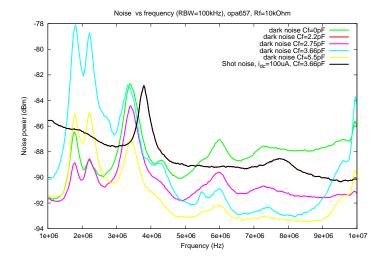
Very simple: Load resistor

- Cut off frequency is still $f_c = 1/(RC_d)$
- Current transimpedance gain $\frac{R_f}{1+iR_fC_{d\omega}}$,
- $C_d = const$


Eugeniy Mikhailov (W&M)

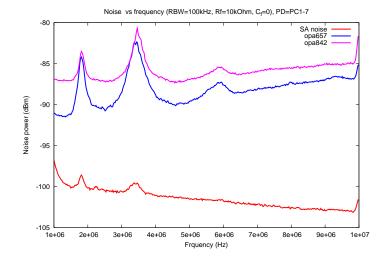
Problems with amplifier

• Current transimpedance gain $\frac{R_f}{1+iR_fC_{d\omega}}$, drops with frequency


• Voltage gain = $\frac{Z_f}{Z_{in}} = jR_f C_d \omega$, grows with frequency

We need compensation: introducing C_f

There is a price to pay: we decrease cut off frequency


Noise suppression with C_F

July 31, 2007 11 / 1

イロト イヨト イヨト イヨト

Dark noise with different OpAmps

Eugeniy Mikhailov (W&M)

July 31, 2007 12 / 1

< ロ > < 回 > < 回 > < 回 > < 回</p>

- We leave in the fallen word full of noise
- Measuring quantum noise is hard
- Be prepared to scarify either SNR or bandwidth
- Careful choice of components is required

Good news

• We have 3-4 dB separation between quantum noise (our signal) and electronic noise

Bad news

• Perfect PD is still to be found, since QE is not great, just 84%