Investigating Vanadium Dioxide Insulator-Metal Transition with Raman and Ultrafast Pulses

E. Radue¹, L. Wang¹, Evan Crisman¹, Russell Wincheski², S. Kittiwatanakul³, J. Lu³, S.A. Wolf³, R. A. Lukaszew¹, Irina Novikova¹

¹Department of Physics, College of William and Mary ²NASA Langley Research Center ³Department of Physics, University of Virginia March 23, 2013

VO₂ Metal-Insulator Transition

Change in optical properties

Pashkin, C. Kübler, H. Ehrke, R. Lopez, a. Halabica, R.F. Haglund, R. Huber, and a. Leitenstorfer, Physical Review B **83**, 195120 (2011).

Elizabeth Radue

Our Work

- Studying optically induced phase transition with pump-probe configuration
 - Varying fluence
 - Varying film temperature
- Raman Spectroscopy of films grown on different films

Pump-probe set up

Measure Drop in reflectivity

Varying Power of Pump Beam

Why mount sample in cryostat?

Effects of Temperature vs. Strong electric fields freeing electrons

 \rightarrow Some controversy as to the main cause: fast response suggests electronic response vs. change in crystal lattice

T. Cocker, L. Titova, S. Fourmaux, G. Holloway, H.–C. Bandulet, D. Brassard, J.–C. Kieffer, M. El Khakani, and F. Hegmann, Physical Review B 85, 155120 (2012).

D. Hilton, R. Prasankumar, S. Fourmaux, a. Cavalleri, D. Brassard, M. El Khakani, J. Kieffer, a. Taylor, and R. Averitt, Physical Review Letters **99**, 226401 (2007).

Cooling film in cryostat

Raman Spectroscopy Studies

- Used Commercial Raman Spectrometer
 - Difficult to see peaks of VO₂ thin films: Maximizing our signal
- Differences between films due to differences in microstructure

Incident Beam Wavelength: minimizing effect from substrate

VO₂ film on Quartz

VO₂ film on Sapphire

Raman Spectra through MIT

Raman Peak amplitude and cw Optical Reflection Measurements

Summery

- See an ultrafast response in films, even at lower temperatures
- Able to identify VO₂ Raman peaks
 - Can see phase transition in spectra
 - Transition temperature effected by microstructure
- Future work: Further analysis on the relaxation of MIT

Acknowledgements

- This work is financed by NSF, DMR-1006013: Plasmon Resonances and Metal Insulator Transitions in Highly Correlated Thin Film Systems. We also acknowledge support from the NRI/SRC sponsored ViNC center.
- Thanks to Buzz Wincheski at NASA Langley Research Center for his time and equipment

Comparison of Substrates In Ultrafast Transition

Elizabeth Radue

VO₂ on Sapphire Grain Size ~20nm

XRD Characterization

35

35.5

36

36.5

37

20 (deg)

37.5

38

38.5

39

Polarization of incident/reflected beam

Multiple peak fits: VO₂ on SiO₂

