Annual Review: Whispering-gallery mode resonators, second harmonic generation, and ultrafast lasers

Matt T. Simons

Department of Physics College of William & Mary

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Whispering-gallery progress
 - Experiment
 - Theory
- **(3)** Second harmonic generation at Rb λ
- 4 Ultrafast center

5 Future plans

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Whispering-gallery progress
 Experiment
 - Theory
- 3 Second harmonic generation at Rb λ
- Ultrafast center

5 Future plans

Motivation

Develop a source of nonclassical light based on nonlinear processes using crystalline whispering-gallery mode resonators.

- Source of bright squeezed light
- Heralded single photon source

ヘロト 人間 とく ヨン くきとう

Previously . . .

- LiNbO₃ WGMRs
- Q-factor $> 10^7$
- $1064nm \rightarrow 532nm$
- Hyper-Raman scattering

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

Previously . . .

- LiNbO₃ WGMRs
- Q-factor $> 10^7$
- $1064nm \rightarrow 532nm$
- Hyper-Raman scattering

Previously . . .

- LiNbO₃ WGMRs
- Q-factor $> 10^7$
- $1064nm \rightarrow 532nm$
- Hyper-Raman scattering

Outline

- 2 Whispering-gallery progress
 - Experiment
 - Theory
- 3 Second harmonic generation at Rb λ
- Ultrafast center
- 5 Future plans

Outline

- Whispering-gallery progressExperiment
 - Theory
- 3 Second harmonic generation at Rb λ
- Ultrafast center
- 5 Future plans

1064nm Tunable laser

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Annealing WGMR disk

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

- **1** Polish disk with 0.1 μ m diamond paper
- **2** Anneal 600° for 24 hrs.
- **6** Polish disk with 0.1 μ m diamond paper

Outline

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

- Whispering-gallery progressExperiment
 - Theory
- 3 Second harmonic generation at Rb λ
- Ultrafast center
- 5 Future plans

Theoretical model

The Hamiltonian inside the cavity is

$$H_{sys} = \hbar\omega_a a^{\dagger}a + \hbar\omega_b b^{\dagger}b + \frac{\imath}{2}\hbar\epsilon(a^{\dagger}a^{\dagger}b - aab^{\dagger})$$
(1)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Variance

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ 圖 のへで

Noise in the amplitude quadrature of the output field $(A_1^{out} = A_{out} + A_{out}^{\dagger})$ is calculated by the variance:

$$Var(A_1^{out}) = \langle |A_1^{out} - \langle A_1^{out} \rangle|^2 \rangle$$
(2)

$$A_1^{out} = \langle A_1^{out} \rangle + \delta A_1^{out} \tag{3}$$

$$Var(A_1^{out}) = \langle |\delta A_1^{out}|^2 \rangle \tag{4}$$

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

With $\dot{x} = -\frac{i}{\hbar}[x, H]$ the intracavity fields change in time as:

$$\dot{a} = -\imath\omega_a a - \frac{1}{2}\gamma_a^{tot}a + \epsilon a^{\dagger}b + \sqrt{\gamma_a^i}a_{in} + \sqrt{\gamma_a^u}u_a \tag{5}$$

$$\dot{b} = -\imath\omega_b b - \frac{1}{2}\gamma_b^{tot}b - \frac{1}{2}\epsilon aa + \sqrt{\gamma_b^i}b_{in} + \sqrt{\gamma_b^u}u_b \tag{6}$$

ヘロト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 4 日 ト

Assuming unseeded SHG ($\bar{b}_{in} = 0$), and approximating each field as $x = \langle x \rangle + \delta x$, the equations describing the fluctuation of the fields are

$$\dot{\delta a} = -\frac{1}{2}\gamma_a^{tot}\delta a + \epsilon \bar{a}^*\delta b + \epsilon \bar{b}\delta a^{\dagger} + \sqrt{\gamma_a^i}\delta a_{in} + \sqrt{\gamma_a^u}\delta u_a \qquad (7)$$

$$\dot{\delta b} = -\frac{1}{2}\gamma_b^{tot}\delta b - \epsilon \bar{a}\delta a + \sqrt{\gamma_b^i}\delta b_{in} + \sqrt{\gamma_b^u}\delta u_b \tag{8}$$

$$\tilde{x}_{c} \equiv \begin{pmatrix} \tilde{\delta a} \\ \tilde{\delta a}^{\dagger} \\ \tilde{\delta b} \\ \tilde{\delta b}^{\dagger} \end{pmatrix}, \quad \tilde{x}_{in} \equiv \begin{pmatrix} \tilde{\delta a}_{in} \\ \tilde{\delta a}_{in}^{\dagger} \\ \tilde{\delta b}_{in} \\ \tilde{\delta b}_{in}^{\dagger} \end{pmatrix}, \quad \tilde{x}_{u} \equiv \begin{pmatrix} \tilde{\delta u}_{a} \\ \tilde{\delta u}_{a} \\ \tilde{\delta u}_{b} \\ \tilde{\delta u}_{b}^{\dagger} \end{pmatrix}$$
(9)

such that the fluctuation equations can be expressed in matrix form:

$$i\Omega\tilde{x}_c = M_c\tilde{x}_c + M_{in}\tilde{x}_{in} + M_u\tilde{x}_u \tag{10}$$

$$\tilde{x}_c = \left(\imath \Omega I - M_c\right)^{-1} \left(M_{in} \tilde{x}_{in} + M_u \tilde{x}_u \right) \tag{11}$$

$$\tilde{x}_{o} \equiv \begin{pmatrix} \delta A_{out} \\ \delta A_{out}^{\dagger} \\ \delta B_{out} \\ \delta B_{out}^{\dagger} \end{pmatrix} = M_{in} \tilde{x}_{c} - \tilde{x}_{in}$$
(12)

$$\tilde{x}_o = [M_{in} (\imath \Omega I - M_c)^{-1} M_{in} - I] \tilde{x}_{in}$$
$$+ M_{in} (\imath \Omega I - M_c)^{-1} M_u \tilde{x}_u$$
(13)

$$\delta A_1^{out} = \delta A_{out} + \delta A_{out}^{\dagger} \tag{14}$$

Solved for $Var(A_1^{out}) = \langle |\delta A_1^{out}|^2 \rangle$ as a function of

• WGMR quality factor *Q*

Figure: f = 10 MHz, $P_{in} = 500 \mu$ W

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Solved for $Var(A_1^{out}) = \langle |\delta A_1^{out}|^2 \rangle$ as a function of

- WGMR quality factor *Q*
- Input power P_{in}

Figure: $Q = 10^8, f = 10 \text{ MHz}$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solved for $Var(A_1^{out}) = \langle |\delta A_1^{out}|^2 \rangle$ as a function of

- WGMR quality factor *Q*
- Input power P_{in}
- Detection frequency f

Figure: $Q = 10^8$, $P_{in} = 500 \ \mu W$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Whispering-gallery progress
 Experiment
 - Theory
- **3** Second harmonic generation at Rb λ

Ultrafast center

5 Future plans

Potassium lithium niobate (KLN)

Second harmonic generation 800 nm \rightarrow 400 nm using natural phase matching

Potassium lithium niobate (KLN)

Second harmonic power vs. pump wavelength for different KLN crystal temperatures

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Whispering-gallery progress
 Experiment
 - Theory
- 3 Second harmonic generation at Rb λ

4 Ultrafast center

5 Future plans

Legend femtosecond laser system

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

TOPAS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Traveling-wave optical parametric amplifier of super-fluorescence Tunable from 470 nm to 1600 nm INSERT GRAPH of WAVELENGTHS

Surface plasmon resonances

- Measured reflection from RuO₂ thin film
- Using TOPAS $\lambda = 800 \rightarrow 1000 \text{ nm}$

L. Wang, C. Clavero, K. Yang, E. Radue, M. T. Simons, I. Novikova, and R. A. Lukaszew. *Bulk* and surface plasmon polariton excitation in RuO₂ for low-loss plasmonic applications in NIR. Opt. Express 20, 8618-8628 (2012).

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Whispering-gallery progress
 Experiment
 - Theory
- 3 Second harmonic generation at Rb λ
- Ultrafast center

5 Future plans

Second harmonic squeezing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

KLN Whispering-gallery disks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Demonstrate naturally-phase matched SHG from 795 \rightarrow 397 nm

Demonstrate SHG squeezing at 795 nm

Hyper-Raman squeezing

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Hyper-Raman squeezing

▲ロト ▲掃 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• "In hyper-Raman scattering squeezing exists ... in the fundamental pump mode."

Hyper-Raman squeezing

- "In hyper-Raman scattering squeezing exists ... in the fundamental pump mode."
- "The Stokes mode in hyper-Raman scattering is squeezed when a fundamental mode with amplitude-squared squeezing propagates through a nonlinear medium."

Thank you!

Questions?

Matrices

◆□▶ < @▶ < E▶ < E▶ E 9000</p>

$$M_{c} \equiv \begin{pmatrix} -\frac{1}{2}\gamma_{a}^{tot} & \epsilon \bar{b} & \epsilon \bar{a}^{*} & 0\\ \epsilon \bar{b}^{*} & -\frac{1}{2}\gamma_{a}^{tot} & 0 & \epsilon \bar{a}\\ -\epsilon \bar{a} & 0 & -\frac{1}{2}\gamma_{b}^{tot} & 0\\ 0 & -\epsilon \bar{a}^{*} & 0 & -\frac{1}{2}\gamma_{b}^{tot} \end{pmatrix}$$
(15)

$$M_{in} \equiv diag\left(\sqrt{\gamma_a^i}, \sqrt{\gamma_a^i}, \sqrt{\gamma_b^i}, \sqrt{\gamma_b^i}\right)$$
(16)

$$M_{u} \equiv diag\left(\sqrt{\gamma_{a}^{u}}, \sqrt{\gamma_{a}^{u}}, \sqrt{\gamma_{b}^{u}}, \sqrt{\gamma_{b}^{u}}\right)$$
(17)

add

Squeezed light

Particle: position & momentum uncertainty relation:

$$\Delta x \Delta p \ge \frac{\hbar}{2} \tag{18}$$

Light: amplitude & phase uncertainty relation:

$$\Delta A \Delta \Phi \ge \frac{1}{2} \tag{19}$$

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Motivation for squeezed light

- Sensitive measurements (LIGO, etc.)
- Quantum cryptography
- Quantum computing

$$\vec{P} \sim \chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \cdots$$
 (20)

• Energy Conservation

$$\omega + \omega = 2\omega \tag{21}$$

• Momentum conservation

$$\Delta k = k_{2\omega} - 2k_{\omega} = \frac{2\omega}{c} (n(2\omega) - n(\omega)) \tag{22}$$

Squeezed light

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Squeezed light

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

• Momentum conservation

$$\Delta k = k_{2\omega} - 2k_{\omega} = \frac{2\omega}{c}(n(2\omega) - n(\omega))$$

• $\Delta k \rightarrow 0$ Phase-matching

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ 釣々で

▲□▶▲@▶▲≧▶▲≧▶ 差 のへで

$$\vec{P} \sim \chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \cdots$$

Intensity dependent process

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\vec{P} \sim \chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \cdots$$

Intensity dependent process

• High-power pump laser

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

$$\vec{P} \sim \chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \cdots$$

Intensity dependent process

- High-power pump laser
- High-quality cavity

Whispering-gallery mode resonators (WGMRs)

Coupling to whispering-gallery modes

Coupling to whispering-gallery modes

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Whispering-gallery mode resonators

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - 釣えで

Coupling to whispering-gallery modes

Frequency scanned output from our LiNbO3 WGMR disk near 795nm

Q-factor of $Q = 10^7$

▲ロト▲撮と▲臣と▲臣と 臣 の文(で

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

(□) (∅) (E) (E) (E)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Input 1064 nm Power = 11 mW

 $T = 26 \ ^{\circ}C$

Raman scattering of the second harmonic

Input 1064 nm Power = 650 mW

 $T=26\ ^{\circ}C$

Hyper-Raman scattering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

- Demonstrated whispering-gallery mode disks
- Observed SHG in WGMR disks
- Predict bright squeezed light
- Observed hyper-Raman scattering

Acknowledgements

