Study of Spatial Structure of a Squeezed Vacuum Field

Ph. D Defense Mi Zhang Advisor: Eugeniy E. Mikhailov March 20 2017

Squeezed field

Precision measurements-Magnetometer-LIGOQuantum imaging

Quantum information

Polarization self rotation effect

Elliptically polarized light rotates by $\phi_{SR} = g \varepsilon L$.

For linearly polarized light, the orthogonal polarization gets squeezed.

Predictions of the PSR-generated squeezing in the Rb atomic vapor : - 8 dB

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester Phys. Rev. A **66**, 043815 – Published 30 October 2002

Current best : - 3 dB S. Barreiro, P. Valente, H. Failache, and A. Lezama

Phys. Rev. A 84, 033851 - Published 28 September 2011

Homodyne Detection scheme

Experimental setup

SMPM fiber — single-mode polarizationmaintaining fiber

- $^{\lambda}/_{2}$ half-wave plate
- GP Glan-laser polarizer
- PBS polarizing beam splitter
- PhR phase-retarding wave plate
- BPD balanced photodetector

Parameters affect squeezing:

- Pump beam intensity
- Beam size
- Atomic density of medium
- Beam focus position in the cell

Experimental setup

SMPM fiber — single-mode polarizationmaintaining fiber

- $^{\lambda}/_{2}$ half-wave plate
- GP Glan-laser polarizer
- PBS polarizing beam splitter
- PhR phase-retarding wave plate
- BPD balanced photodetector

Parameters affect squeezing:

Pump beam intensity

Beam size

Atomic density of medium

Beam focus position in the cell

Spatial modes of light

Hermite Gaussian modes

Laguerre Gaussian modes

Self-focusing of beam

A nonlinear process in medium,

caused by the intensity distribution change in strong field

Correlation between self squeezing and squeezing

Interferometric scheme of detection

To calibrate a good mode match, we introduce a parameter visibility

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Usually in similar detecting scheme, a visibility of 90% is necessary to detect squeezing. We had V = 98%, but no squeezing was observed.

Circular beam mask

Circular beam mask

Iris transmission fixed

Theoretical explanation

Q: How Many Modes Should We Keep?!?

A: 5.

An analysis reveals we must keep up to p=5 in our superposition.

Theoretical explanation

TABLE 5.1: Squeezing Parameters for Various Modes

	1					
p	r'_p	$\theta_p/2$	$ O_p $	$\operatorname{Arg}(O_p)$		
0	1.297	160°	0.995	71°		
1	0.315	113°	0.091	101°		
2	0.149	97°	0.031	123°		
3	0.029	25°	0.006	76°		
4	0.011	171°	0.004	38°		
5	0.010	18°	0.002	160°		

Multi-mode field generated in the vapor cell, resulting in a bad mode match and less effective detection of squeezing.

M Zhang, RN Lanning, Z Xiao, JP Dowling, I Novikova, EE Mikhailov Physical Review A 93 (1), 013853

Iris size fixed

Optical depth study – multipass

Squeezing dependence on optical depth

 $N = 9.3 \times 10^{11} / \text{cm}^3$ P = 11 mWSqueezing = -2.1 dB

- $N = 4.3 \times 10^{11} / \text{cm}^3$ P = 11 mWSqueezing = -2.6 dB
- $N = 2.4 \times 10^{11} / \text{cm}^3$ P = 11 mWSqueezing = -2.4 dB

Squeezing dependence on optical depth

Two cells

Entangled position

Spatial light modulator

A reflective device that changes the phase retardation of light incident on screen.

Normalized intensity (top) and phase (bottom) plots of Laguerre–Gaussian modes: LG_{01} , LG_{11} , and LG_{21} (left to right) showing the p + 1 concentric rings and the effect on the phase pattern.

Yao, A.M., and Padgett, M.J. (2011) Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 3 (2). p. 161. ISSN 1943-8206

Change of pump

The SLM changes the pump beam shape to generate different amount of noise suppression.

Squeezing is detected by the spectrum analyzer and sent to the optimization algorithm to decide how to modify the phase mask.

Feedback loop and Optimization algorithm

Optimization algorithm – Metropolis

- If squeezing is improved, accept change
- If not, accept change with a probability

Phase mask applied to the SLM is composed of N higher modes with I = 0 or p = 0

$$\Phi(x, y) = \sum_{i=1}^{N} (C_{iR} + iC_{iI}) \Phi_i(x, y, w)$$

 C_{iR} is the real coefficient of the ith mode and C_{iI} is the imaginary part. $\Phi(x, y)$ is the phase applied to a certain position (x, y), $\Phi_i(x, y, w)$ is the phase of the ith mode with waist w.

Optimized squeezing

Optimal Mode Composition with 5 Higher p Modes

w	0.00357		
c_1	-0.00144	c_1^*	0.00131
c_2	0.789	c_2^*	-0.174
c_3	-0.00101	c_3^*	0.182
c_4	0.00810	c_4^*	0.127
c_5	0.0197	c_5^*	0.0234

Original squeezing = -2.0 dB Improved squeezing = -2.3 dB

(a)		(b)				
			Optim	al Mode Co	mposi	tion with 5 Higher 1 Modes
			w	0.00101		
	in the second		c_1	0.405	c_1^*	-0.000189
			c_2	1.59	c_2^*	-0.0212
			c_3	-0.334	c_3^*	-0.0395
			c_4	1.88	c_4^*	0.00406
			c_5	0.0196	c_5^*	-0.0120
					<u> </u>	

Original squeezing = -0.7 dB Improved squeezing = -1.2 dB

Change of Local Oscillator

Original squeezing = -1.8 dB Squeezing with SLM on = -1.0 dB

Direct observation of beam

Camera: Princeton Instruments PIXIS Attenuator : neutral density filters

Noise calibration in a coherent beam

For coherent beam, there should be $\Delta N^2 = \overline{N}$

Noise statistics

Figure credit: K. T. Kutzke

Squeezed field

Averaged photon number \overline{N}

Normalized photon number noise $\overline{N}/\Delta N^2$

The normalized noise map has a clear spatial structure.

Noise structure in a squeezed vacuum field

Figure credit: K. T. Kutzke

Conclusions

- We are able to produce -2.7 dB of squeezing below shot noise
- The squeezed vacuum field generated in hot Rb vapor is in a multimode structure
- The optical depth of medium is not the only factor that determines squeezing
- Pump beam shape influences the squeezing generated in the medium, and is possible to improve it.
- With a quantum noise limited camera, we can see a spatial dependence of noise in the squeezed vacuum field.

Acknowledgment

This project is supported by AFOSR grant FA9550-13-1-0098.

Quantum Optics Group @ College of William and Mary

Louisiana State University

Jonathan P. Dowling

R. Nicholas Lanning

Zhihao Xiao