Propagation of quantum optical fields under the conditions of multi-photon resonances in a coherent atomic vapor

Gleb Romanov

3/12/2013

Outline

- Squeezed states of light
- Previous experiment
- Hyper-fine EIT filtering experiment
- "Fast" squeezing experiment
- Future plans

Squeezed states of light

Coherent state: Squeezed state: $\Delta X_1 \Delta X_2 = \frac{1}{4}$ 4

 $\Delta X_1 \Delta X_2 \geq \frac{1}{4}$ 4 *Squeezed states of light*

 $[a, a^{\dagger}] = 1$ $\mathbb{I} = 1$ $[X_1, X_2] = \frac{i}{2}$

 $E(t) = \varepsilon (ae^{-i\omega t} + a^{\dagger}e^{i\omega t})$ -> $E(t) = 2\varepsilon (X_1 \cos \omega t + X_2 \sin \omega t)$ 2

 $\Delta X_1 \Delta X_2 = \frac{1}{4}$ 4

Coherent state: Squeezed state: $\Delta X_1 \Delta X_2 \geq \frac{1}{4}$ 4

Polarization self-rotation

$$
\varphi_{sr} \simeq \frac{3}{4 \pi} N \lambda^2 \frac{\gamma}{\Delta} L \varepsilon
$$

Polarization self-rotation

Horizontally polarized pump field

squeezed vacuum field

Hans-A. Bachor, Timothy C. Ralph "A Guide to Experiments in Quantum Optics" ⁷

Beam splitter model

$$
\begin{pmatrix} V_{+,out} \\ V_{-,out} \end{pmatrix} = \begin{pmatrix} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{pmatrix} \begin{pmatrix} V_{+,in} \\ V_{-,in} \end{pmatrix} + \begin{pmatrix} 1 - (A_+^2 + A_-^2) \\ 1 - (A_+^2 + A_-^2) \end{pmatrix}
$$

Where $A_{\pm} = \frac{1}{2}$ 2 $(T(\omega) \pm T(-\omega))$ $T(\omega)$ – normalized transmission at the frequency ω $V_{+, in}$ - input noise variance $V_{+, out}$ - output noise variance

Eugeniy E. Mikhailov et al., PRA 73, 053810 (2006) 12

Electromagnetically induced transparency (EIT)

 δ $| s \overline{\smash{\big)}\smash{\big)}$ $| g >$ $| e \overline{\smash{\big)}\smash{\sim}}$ Ω $\boldsymbol{\mathcal{E}}$

Outline

- Squeezed states of light
- Previous experiment
- Hyper-fine EIT filtering experiment
- "Fast" squeezing experiment
- Future plans

Previous experiment

The atoms: ⁸⁷Rb

 \star = populated (Zeeman structure shown)

Sample data

Outline

- Squeezed states of light
- Previous experiment
- Hyper-fine EIT filtering experiment
- "Fast" squeezing experiment
- Future plans

Experimental setup

Experimental setup

Experimental setup

Excess noise power for different coherent probe input powers.

Improved setup

Pump leakage reduced from 0.5 uW to 20 nW

Probing dense atomic media with noise

Outline

- Squeezed states of light
- Previous experiment
- Hyper-fine EIT filtering experiment
- "Fast" squeezing experiment
- Future plans

"Fast" squeezing experiment motivation

- Phys. Rev. Letters **86** (2001) 3925 A. Kuzmich et al., "Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation"
- Journal of Optics **12** (2010) 104007 R. W. Boyd et al., "Noise properties of propagation through slow- and fast-light media"

Faraday rotation

Faraday rotation

BPD signal vs magnetic field in the interaction cell , $F = 2 \rightarrow F' = 1, T = 50 \degree C$

Group velocity

Experimental setup

Squeezed vacuum state + Local oscillator \bullet NW \bullet 1.5 Noise power, dB
-0.5
-0.5 \bullet X_2 Spectrum analyzer-1 -1.5° BPD 100 200 300 400 X_1 Time, a.u. λ/4 λ/2 PBS bypass \mathbb{Q} PBS L1 $\left|\left|\left|\right|\right|\right|$ L2 \mathbb{Q} GP Squeezing cell Interaction cell

A. Lezama et al., Phys. Rev. A 84 (2011) 033851 ³³

Results

Future plans

- Finish "fast" squeezing experiment
- Optical gyroscopes based on slow/fast light
- Fully atomic generation and manipulation of squeezing
- \sim 2 dB of noise suppression
- It is important to keep the pump leakage as small as possible
- Can probe dense atomic media with noise
- Demonstration of superluminal squeezing propagation

EIT effect

Consider a 3 level system with two optical fields:

- Weak probe field ε
- Strong control field with the Rabi frequency Ω

EIT effect

Consider a 3 level system with two optical fields:

- Weak probe field ε
- Strong control field with the Rabi frequency Ω

Electric susceptibility:

$$
\chi(\delta) = \frac{N}{V} \frac{D_{eg}^2}{\epsilon_0 \hbar} \frac{\delta + i\gamma_0}{|\Omega|^2 + \Gamma_0 \Gamma}
$$

Where D_{eq} - electric dipole moment

$$
\Gamma_0 = \gamma_0 - i\delta
$$

$$
\Gamma = \gamma - i\delta
$$

 γ – atomic polarization decay rate

 γ_0 - coherence decay rate

EIT effect

EIT effect

EIT effect

