Investigation of Squeezed Light with an Injection-Locked Laser System

Tom Noel W&M REU Midway Talk July 1, 2008

Fundamental Quantum Noise Limit

Squeezed light has suppressed noise

- Coherent states have equal uncertainty in amplitude and phase
- Squeezed states have less uncertainty in either amplitude or phase (and more in the other)

Allows noise to be suppressed below the quantum limit!

Suppressed noise has useful applications

- Interferometry

 LIGO
- Communications
 - Increase signal to noise ratio

A Michelson interferometer

A Squeezing Method

 Nonlinear interaction with Rb atoms creates squeezed state

It is (nearly) that simple.

How it really looks

Injection Locking

- Previous experiment
 - More power = larger squeezing
- Injection locking gives more power

Squeezing Results

Squeezing vs. Incident Power

Contrary to expectations, squeezing does not increase with incident laser power