
Automated Mode-Matching of Gaussian Beams
Matthew Argao

 In the field of optics and laser related physics, Gaussian beams are a well documented

model of electromagnetic radiation whose characteristics of transverse electric field and

intensity are approximated by Gaussian functions of the form:

Where r is the radial distance from the center axis of the beam, z is the axial distance from the

beam’s narrowest point, also termed waist, k is the wave number in radians per meter, E0 is the

electric field at E(0,0), w(z) is the radius where the field amplitude and intensity drop to 1/e and

1/e2 of their axial values respectively, w0 is the waist size w(0), R(z) is the radius of curvature,

and ζ(z) is the Gouy phase shift which is an extra contribution to phase seen in Gaussian

beams. w(z) and R(z) can be further characterized by following equations:

𝑤 𝑧 = 𝑤0 1 +
𝑧

𝑧𝑅

2

𝑅 𝑧 = 𝑧[1 +
𝑧𝑅
𝑧

2

]

Where zR is the Rayleigh Length, defined as the distance along the propagation direction from

w0 where the area of the beam cross section is doubled. As many lasers emit beams that follow

this Gaussian profile, it follows then that the beams encountered in much laboratory research

are characterized by Gaussian beams. It becomes natural, then, for researchers to wish to

output a desired Gaussian beam that meets certain specifications, determined on a case by

case basis of the experiment. For example, when one wishes to inject a given pump laser beam

into another laser cavity, it is required that the beam corresponds to the previous beam. In

other words, one must mode-match the two beams. The simplest way in which we manipulate

Gaussian beams is through the use of lenses; lenses transform an input Gaussian beam with

certain parameters into another Gaussian beam which consists of different parameters. For our

research, the main parameters of Gaussian beams which are focused on are the complex beam

parameter, q(z), the beam’s waist, w(z), and its radius of curvature, R(z). It becomes

advantageous to represent the complex beam parameter in terms of its reciprocal to show the

relationship between parameters q(z), w(z) and R(z), given as:

1

𝑞 𝑧
=

1

𝑅 𝑧
−

𝑖𝜆

𝜋𝑤2 𝑧

Where 𝜆 is the wavelength of the beam. These quantities are more easily visualized in Figure 1.

Figure 1. General profile of a Gaussian beam.

The complex beam parameter readily contains information on both the radius of curvature and

waist of a Gaussian beam at any position of its propagation. Thus, the complex beam parameter

becomes essential to the simulation of Gaussian beam propagation.

In ray transfer matrix analysis, we use the initial beam parameter, qi, and the ABCD

transfer matrix of the optical system to find the output beam, qf. The ABCD transfer matrix is a

matrix which characterizes optical elements, such as lenses or free space, with a matrix of the

form:

𝐴 𝐵
𝐶 𝐷

When determining the optical elements’ effects on, say a laser, we consider two reference

planes: the input and output planes. Using this expression:

𝑥2

𝜃2
 =

𝐴 𝐵
𝐶 𝐷

𝑥1

𝜃1

We consider the ray, or beam, entering the input plane a distance x1 from the optical axis

(which is taken to coincide with the z-axis) at an angle of 𝜃1. As the beam travels it eventually

crosses the output plane this time with characteristics x2 and 𝜃2. An example of this can be seen

through the propagation of a beam through free space. The ray transfer matrix of free space is

given by:

𝑆 =
1 𝑑
0 1

Where d is the distance traveled along the optical axis. Using the expression given previously,

we get:

𝑥2

𝜃2
 =

1 𝑑
0 1

𝑥1

𝜃1

Which we can then use to relate the parameters of the input and output rays visualized in

Figure 2:

𝑥2 = 𝑥1 + 𝑑𝜃1
𝜃2 = 𝜃1

Figure 2. Free-space propagation example.

Similarly we can go through the same geometric model using the ABCD matrix of a thin-lens

given as:

𝐿 =

1 0

−
1

𝑓
1

Where f is the focal length of the lens with positive values corresponding to convex or

converging lenses. Similar to the geometric model we can apply this useful matrix formalism

and apply it to describe Gaussian beams. Using the previously defined parameter q we apply

the following equation:

𝑞2

1
 = 𝑘

𝐴 𝐵
𝐶 𝐷

 (
𝑞1

1
)

Where q1 and q2 are the input and output complex beam parameters respectively and k is the

normalization constant chosen to ensure that the second component of the ray vector equals

one. Upon expansion of the equation we receive:

𝑞2 = 𝑘(𝐴𝑞1 + 𝐵)

1 = 𝑘(𝐶𝑞1 + 𝐷)

Dividing the first equation by the second to eliminate the normalization constant and taking the

reciprocal we finally get the general form:

1

𝑞2
=
𝐶 +

𝐷
𝑞1

𝐴 +
𝐵
𝑞1

The utility of the ABCD matrix formalism allows us to create optical systems consisting of

multiple elements and lets us receive an output beam for every input beam. Due to the need to

propagate Gaussian beams through these multiple matrix elements we chose MATLAB (Matrix

Laboratory) to handle all propagation and mode-matching code.

 Prior to my working on the program, Professor Eugeniy Mikhailov had compiled a

program which simulated Gaussian beam propagation through free space and select lenses

with chosen focal lengths. The program requires input of initial and final values of radius, waist

and position. Combining these input parameters and specified positions and focal lengths for

three lenses, the beam is profiled and visualized. Qualitative analysis of the plot allows

judgment of whether a beam is mode-matched or not; forward and backward propagations of

the beam with the same parameters and optical system should ideally yield identical beams. An

example of a poorly mode-matched beam is shown in Figure 3.

Figure 3. A poorly mode-matched beam solution. As seen qualitatively, the forward and

backward propagation of the beam do not coincide at all. The x-axis is the propagation direction
of the beam and the y-axis is the waist distance from the optical axis.

Keeping this in mind, we began to build upon the old code and automated the process

by which mode-matching occurs. In the original program, the solutions for the placement of the

focal lenses were already given thus to automate placement of the lenses we required a fitness

function to guide the program into picking a solution which minimized “energy”. The fitness

function works on the basis of penalties; the further one deviates from the desired laser beam

the higher the penalty, ergo higher penalty energies correspond to worse solutions. Four

factors were taken into account, when determining the fitness of a solution. The solution must

make sure the lenses are between the edge boundaries, make sure that lenses are not placed

too close to each other, make a collimated region between the second and third lens and

ensure that at a given point the forward and backward propagation of the beam have matching

waists. The first and second factors of this list were needed to ensure that solutions given were

possible to recreate in real life, the third factor was deemed necessary due to the practicality of

having a collimated section in an optical system and the fourth factor is that factor that majorly

contributes to the determination of whether beams were actually mode-matched. Figure 4

shows an example of what the fitness function looks like for a three lens solution. In this

particular example, lens two is held at .403m and lens three is held at .803m and lens one is

shuffled from 0 to xf = 1.0107m.

Figure 4. Fitness function for optical system where x_lens_two = .403m, x_lens_three = .803m.

The x-axis is position of the first lens and the y-axis depicts the penalty attributed to that
position. The effects of the various penalties can be seen within the plot; penalties associated
with lens overlap are apparent in peaks ~.4m and ~.8m, and penalties associated with being

within x0 and xf are seen in the peaks near the ends of the plot.

After properly instituting a fitness function, we iterated the lenses, taking care to

preserve their order in the optical system, through different positions between the initial point,

x0, and the final point, xf. For the example solution given in the original code, the order of the

lenses is already given, however, in real life laboratory situations, researchers are usually

dealing with a set of lenses, of which they choose to use. Thus it was necessary to implement a

feature that permuted through all possible lens choices in a given “box” of lenses and iterated

the same fitness through each permuted set. Going further along the direction of practicality,

more customizable features were added to the code. Not only did it automatically pick and

permute all possible combinations of every lens in the “lens set”, it also allowed settings for

things such as number of shuffles to each set per iteration, how many unique solutions to

display and threshold at which they’re determined to be “unique and separate”, and how many

unique solutions to visualize. With all this to iterate through, efficiency of the code becomes a

problem. So, again, we took this into consideration for usability and ensured that the code was

optimized for multiple core processors which speed the runtimes significantly.

As of now, the automated program appropriately finds the correct solution that

coincides with the given test solution of the original program. As an example of its functionality,

we insert a given set of lenses consisting of .075m and .203m focal length lenses. After running,

the program displays five solutions, coinciding with the various permutations of these two

types of lenses. The first three solutions, coinciding with the lowest three energy solutions are

as follows:

Figure 5. Three solutions found by the automated mode-matching program. The x-axis is the
propagation direction of the beam and the y-axis is the waist distance from the optical axis.

The above example worked with a lens set that consisted of only two types of lenses.

The number of permutations and possible combinations expand significantly with each new

type of lens added to the set; what was once a 45-second calculation could easily become a

multiple hour affair. Thus efficiency remains a primary concern for further development of this

project. Revising the original code for beam propagation to work more efficiently will help

alleviate the problems concerning runtime. The previous beam propagation code iterated

through each test point individually which was not as efficient as it could be given what

MATLAB could provide. Thus we sped up the propagation code by allowing chunks of elements

to be computed in stages, first points to the left of the lens then after. This minor change

decreased our runtimes by a factor of approximately 4, from a ~40s calculation to ~9s

calculation. Future directions may include refinement of fitness function and additional

features that would be consistent with making the program interface more intuitive for

researchers who might use it. In the end, practicality, efficiency and accuracy are what we hope

to achieve in the final product.

References

Alda, Javier. "Laser and Gaussian Beam Propagation and Transformation." Encyclopedia of
 Optical Engineering (2003): 999-1013.

Self, Sidney A. "Focusing of Spherical Gaussian Beams." APPLIED OPTICS 22.5 (1983): 658-61.

