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 In the field of optics and laser related physics, Gaussian beams are a well documented 

model of electromagnetic radiation whose characteristics of transverse electric field and 

intensity are approximated by Gaussian functions of the form: 

 

Where r is the radial distance from the center axis of the beam, z is the axial distance from the 

beam’s narrowest point, also termed waist, k is the wave number in radians per meter, E0 is the 

electric field at E(0,0), w(z) is the radius where the field amplitude and intensity drop to 1/e and 

1/e2 of their axial values respectively, w0 is the waist size w(0), R(z) is the radius of curvature, 

and ζ(z) is the Gouy phase shift which is an extra contribution to phase seen in Gaussian 

beams.  w(z) and R(z) can be further characterized by following equations: 
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Where zR is the Rayleigh Length, defined as the distance along the propagation direction from 

w0 where the area of the beam cross section is doubled. As many lasers emit beams that follow 

this Gaussian profile, it follows then that the beams encountered in much laboratory research 

are characterized by Gaussian beams. It becomes natural, then, for researchers to wish to 

output a desired Gaussian beam that meets certain specifications, determined on a case by 



case basis of the experiment. For example, when one wishes to inject a given pump laser beam 

into another laser cavity, it is required that the beam corresponds to the previous beam. In 

other words, one must mode-match the two beams. The simplest way in which we manipulate 

Gaussian beams is through the use of lenses; lenses transform an input Gaussian beam with 

certain parameters into another Gaussian beam which consists of different parameters. For our 

research, the main parameters of Gaussian beams which are focused on are the complex beam 

parameter, q(z), the beam’s waist, w(z), and its radius of curvature, R(z). It becomes 

advantageous to represent the complex beam parameter in terms of its reciprocal to show the 

relationship between parameters q(z), w(z) and R(z), given as: 
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Where 𝜆 is the wavelength of the beam. These quantities are more easily visualized in Figure 1. 

 
Figure 1. General profile of a Gaussian beam. 

The complex beam parameter readily contains information on both the radius of curvature and 

waist of a Gaussian beam at any position of its propagation. Thus, the complex beam parameter 

becomes essential to the simulation of Gaussian beam propagation.  



In ray transfer matrix analysis, we use the initial beam parameter, qi, and the ABCD 

transfer matrix of the optical system to find the output beam, qf. The ABCD transfer matrix is a 

matrix which characterizes optical elements, such as lenses or free space, with a matrix of the 

form: 

 
𝐴 𝐵
𝐶 𝐷

  

When determining the optical elements’ effects on, say a laser, we consider two reference 

planes: the input and output planes. Using this expression: 

 
𝑥2

𝜃2
 =   

𝐴 𝐵
𝐶 𝐷

  
𝑥1

𝜃1
  

We consider the ray, or beam, entering the input plane a distance x1 from the optical axis 

(which is taken to coincide with the z-axis) at an angle of 𝜃1. As the beam travels it eventually 

crosses the output plane this time with characteristics x2 and 𝜃2. An example of this can be seen 

through the propagation of a beam through free space. The ray transfer matrix of free space is 

given by: 
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Where d is the distance traveled along the optical axis. Using the expression given previously, 

we get: 
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Which we can then use to relate the parameters of the input and output rays visualized in 

Figure 2: 

𝑥2 = 𝑥1 +  𝑑𝜃1 
𝜃2 =  𝜃1  



 
Figure 2. Free-space propagation example. 

Similarly we can go through the same geometric model using the ABCD matrix of a thin-lens 

given as: 
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Where f is the focal length of the lens with positive values corresponding to convex or 

converging lenses. Similar to the geometric model we can apply this useful matrix formalism 

and apply it to describe Gaussian beams. Using the previously defined parameter q we apply 

the following equation: 
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Where q1 and q2 are the input and output complex beam parameters respectively and k is the 

normalization constant chosen to ensure that the second component of the ray vector equals 

one. Upon expansion of the equation we receive: 

𝑞2 = 𝑘(𝐴𝑞1 + 𝐵) 

1 = 𝑘(𝐶𝑞1 +  𝐷) 

Dividing the first equation by the second to eliminate the normalization constant and taking the 

reciprocal we finally get the general form: 
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The utility of the ABCD matrix formalism allows us to create optical systems consisting of 

multiple elements and lets us receive an output beam for every input beam. Due to the need to 

propagate Gaussian beams through these multiple matrix elements we chose MATLAB (Matrix 

Laboratory) to handle all propagation and mode-matching code. 

 Prior to my working on the program, Professor Eugeniy Mikhailov had compiled a 

program which simulated Gaussian beam propagation through free space and select lenses 

with chosen focal lengths. The program requires input of initial and final values of radius, waist 

and position. Combining these input parameters and specified positions and focal lengths for 

three lenses, the beam is profiled and visualized. Qualitative analysis of the plot allows 

judgment of whether a beam is mode-matched or not; forward and backward propagations of 

the beam with the same parameters and optical system should ideally yield identical beams. An 

example of a poorly mode-matched beam is shown in Figure 3.  

 



 
Figure 3. A poorly mode-matched beam solution. As seen qualitatively, the forward and 

backward propagation of the beam do not coincide at all. The x-axis is the propagation direction 
of the beam and the y-axis is the waist distance from the optical axis. 

 

Keeping this in mind, we began to build upon the old code and automated the process 

by which mode-matching occurs. In the original program, the solutions for the placement of the 

focal lenses were already given thus to automate placement of the lenses we required a fitness 

function to guide the program into picking a solution which minimized “energy”.  The fitness 

function works on the basis of penalties; the further one deviates from the desired laser beam 

the higher the penalty, ergo higher penalty energies correspond to worse solutions. Four 

factors were taken into account, when determining the fitness of a solution. The solution must 

make sure the lenses are between the edge boundaries, make sure that lenses are not placed 

too close to each other, make a collimated region between the second and third lens and 

ensure that at a given point the forward and backward propagation of the beam have matching 

waists. The first and second factors of this list were needed to ensure that solutions given were 

possible to recreate in real life, the third factor was deemed necessary due to the practicality of 



having a collimated section in an optical system and the fourth factor is that factor that majorly 

contributes to the determination of whether beams were actually mode-matched. Figure 4 

shows an example of what the fitness function looks like for a three lens solution. In this 

particular example, lens two is held at .403m and lens three is held at .803m and lens one is 

shuffled from 0 to xf = 1.0107m. 

 

 
Figure 4. Fitness function for optical system where x_lens_two = .403m, x_lens_three = .803m. 

The x-axis is position of the first lens and the y-axis depicts the penalty attributed to that 
position. The effects of the various penalties can be seen within the plot; penalties associated 
with lens overlap are apparent in peaks ~.4m and ~.8m, and penalties associated with being 

within x0 and xf are seen in the peaks near the ends of the plot. 
 

After properly instituting a fitness function, we iterated the lenses, taking care to 

preserve their order in the optical system, through different positions between the initial point, 

x0, and the final point, xf. For the example solution given in the original code, the order of the 

lenses is already given, however, in real life laboratory situations, researchers are usually 



dealing with a set of lenses, of which they choose to use. Thus it was necessary to implement a 

feature that permuted through all possible lens choices in a given “box” of lenses and iterated 

the same fitness through each permuted set. Going further along the direction of practicality, 

more customizable features were added to the code. Not only did it automatically pick and 

permute all possible combinations of every lens in the “lens set”, it also allowed settings for 

things such as number of shuffles to each set per iteration, how many unique solutions to 

display and threshold at which they’re determined to be “unique and separate”, and how many 

unique solutions to visualize. With all this to iterate through, efficiency of the code becomes a 

problem. So, again, we took this into consideration for usability and ensured that the code was 

optimized for multiple core processors which speed the runtimes significantly. 

As of now, the automated program appropriately finds the correct solution that 

coincides with the given test solution of the original program. As an example of its functionality, 

we insert a given set of lenses consisting of .075m and .203m focal length lenses. After running, 

the program displays five solutions, coinciding with the various permutations of these two 

types of lenses. The first three solutions, coinciding with the lowest three energy solutions are 

as follows: 

 

 

 

 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  

 
 
 

Figure 5. Three solutions found by the automated mode-matching program. The x-axis is the 
propagation direction of the beam and the y-axis is the waist distance from the optical axis. 



The above example worked with a lens set that consisted of only two types of lenses. 

The number of permutations and possible combinations expand significantly with each new 

type of lens added to the set; what was once a 45-second calculation could easily become a 

multiple hour affair. Thus efficiency remains a primary concern for further development of this 

project. Revising the original code for beam propagation to work more efficiently will help 

alleviate the problems concerning runtime.  The previous beam propagation code iterated 

through each test point individually which was not as efficient as it could be given what 

MATLAB could provide. Thus we sped up the propagation code by allowing chunks of elements 

to be computed in stages, first points to the left of the lens then after. This minor change 

decreased our runtimes by a factor of approximately 4, from a ~40s calculation to ~9s 

calculation. Future directions may include refinement of fitness function and additional 

features that would be consistent with making the program interface more intuitive for 

researchers who might use it. In the end, practicality, efficiency and accuracy are what we hope 

to achieve in the final product. 
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