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Abstract

Squeezed states of light, i.e., quantum states exhibiting reduced noise statistics, may
be used to greatly enhance the sensitivity of light-based measurements. We study a
squeezed vacuum field generated in hot Rb vapor via the polarization self-rotation
e↵ect. By propagating a strong pump beam through an atomic vapor cell, we were
able to achieve a noise suppression of 2.7 dB below shot noise. Our previous work
revealed that this amount of noise suppression may be limited by the excitement of
higher order modes in the squeezed field during the atom-light interaction. Once
incident on the homodyne detection scheme, these higher order modes may induce
an imperfect mode match between the squeezed field and the local oscillator (LO). In
this work, we used a liquid-crystal-based spatial light modulator to modify the spatial
mode structure of the pump and LO beams. We demonstrate that optimization of
the spatial modes can lead to higher detected noise suppression.
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Chapter 1

Introduction

Squeezed light is a nonclassical state of the electromagnetic field, where the photon

statistics di↵er from those of coherent light. These states act as a powerful tool

to reduce the uncertainty in many optical precision measurements. In addition to a

wealth of technical applications, manipulation of the quantum noise in squeezed states

adds another dimension to the study of electromagnetic radiation and the quantum

mechanical structure of nature.

1.1 Quantum noise and squeezed light

One of the foundations of quantum mechanics is the Heisenberg Uncertainty Prin-

ciple, which states that certain pairs of observables in a system cannot be known

simultaneously to better than a certain precision. Via the quantum description of

light, we define an uncertainty relation between the amplitude (�X1) and phase

(�X2) quadratures of the electromagnetic field: �X1�X2 � 1/4. This implies that

one cannot know the exact amplitude and phase of light simultaneously. Hence, we

observe a fundamental limiting noise on any light-based measurement.

For coherent states of light, the quantum uncertainties in the amplitude and phase

quadratures are equal. The quantum noise of each quadrature is known as the stan-

dard quantum limit or shot noise, and can be thought of as arising from the

discrete nature of photons. This noise exists even in the vacuum state; vacuum fluc-
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tuations are the source of fundamental noise on a signal of interest.

To go beyond shot noise limited measurements, we look to nonclassical states of

light called squeezed states, where we can manipulate the quantum noise. The

Heisenberg Uncertainty Principle only places a limit on the combination of uncer-

tainties of the amplitude and phase of light. Hence, if the quantum uncertainty in

the amplitude is reduced, the phase uncertainty is increased. This “squeezing” of

one uncertainty and “stretching” of the other may be achieved in quantum squeezed

states. By building correlations between the amplitude and phase of the light using

higher order nonlinear interactions with atoms, these squeezed states may be readily

generated.

1.2 Applications of squeezed light

One natural application of squeezing is in precision optical measurements. Any shot-

noise-limited optical measurement can potentially be improved by the reduced uncer-

tainty levels of a squeezed state. For many measurements, the increased uncertainty

of one property is no problem if we are only interested in measuring the other property

of the light.

One important use for squeezed light is to improve the sensitivity of interferomet-

ric measurements, as suggested by Caves [1]. More topically, squeezing can be used to

improve the most sensitive interferometeric detector in the world in the LIGO exper-

iment for detection of gravitational waves. One of the dominant sources of noise in

the quantum-limited LIGO interferometer is caused by the vacuum fluctuations that

enter into the empty port of a beamsplitter. This vacuum noise becomes the limiting

source of noise across an important range of gravitational wave frequencies. If this

vacuum state is replaced by a squeezed vacuum state, the fluctuations of the mea-

sured quadrature can be reduced, resulting in an overall more precise measurement.

Squeezed vacuum has already been utilized in GEO600: Using vacuum squeezed 2 dB

below shot noise, the sensitivity of the detector was improved by 26% [2]. Hence, one

of the main improvements for the next generation LIGO comes from using squeezed
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vacuum.

Other interferometric measurements, such as those used for measuring polariza-

tion, can show improvements in precision [3]. Absorption measurements that depend

on amplitude modulation may be improved by decreasing amplitude noise which

boosts the signal-to-noise ratio [4]. Additionally, squeezed light can be used to im-

prove a wide range of atomic spectroscopy measurements [5]. Other examples could

include improvements in optical magnetometers, frequency standards, timekeeping,

and biological measurements. These applications and more may take advantage of

the manipulation of signal noise using squeezed states of light.

1.3 Squeezing with resonant atoms

In this report, we focus on squeezed vacuum produced in atomic vapors through a

nonlinear light-atom interaction known as polarization self-rotation (PSR). Atoms

provide a broad range of possibilities due to our ability to manipulate and tune light

interactions with atomic vapors. Techniques shown to produce squeezing in atoms

include four-wave mixing, the nonlinear Kerr e↵ect, and PSR.

The PSR technique o↵ers several advantages over other squeezing generation

schemes. The method is simple: Squeezed vacuum can be generated via PSR us-

ing only a diode laser and an atomic vapor cell in a single-pass configuration. The

power requirements are low, on the order of milliwatts, and the setup has the poten-

tial to be easily miniaturized. Squeezing is produced without the use of an atomic

cavity and the vacuum may be separated from the pump using polarizers or beam-

splitters. The strength of the interaction may be tuned to fit the experiment by

changing light intensity and atomic density, and the temperature ranges necessary

are easily achieved. Overall, PSR squeezing o↵ers a source of squeezed vacuum which

is much less complicated, less costly, and potentially more stable than most other

squeezing methods.

In the PSR e↵ect, the polarization of a near-resonant beam of light rotates as it

travels through a material that is circularly birefringent. Given a strong pump beam
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that is linearly polarized, small rotations in this beam can project changes onto the

vacuum state in the orthogonal polarization, which are correlated in such a way as

to produce squeezed vacuum.

In 2002, polarization self-rotation squeezing in atomic vapors was studied in the

theoretical work by Matsko et al. [6]. The authors predicted that squeezing levels

as high as �8 dB below shot noise could be achieved using this method in hot Rb

atoms. The best atomic PSR squeezing reported has been a noise suppression of �3

dB. These observations below theoretical predictions are possibly due to the mode

composition of the squeezed field. During the light-atom interaction, higher order

modes are generated in the squeezed vacuum. This may lead to a mode mismatch

between the squeezed vacuum and the local oscillator, reducing observed squeezing

[7]. In this report, we present the results of experimental studies into the mode

structure of the pump and local oscillator used for squeezing.
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Chapter 2

Theory

2.1 Quantum fluctuations

When we quantize the electromagnetic field, we represent the electromagnetic field

operator in terms of the creation and annihilation operators [8]. For simplicity, we

focus on a linearly polarized plane wave

Ê = E0(z)
⇣
âe

�i!t + â

†
e

i!t
⌘

where E0 is the spatially-dependent amplitude and ! is the frequency of the field.

Alternatively, we may represent the field in terms of quadrature operators X̂1 and

X̂2,

X̂1 =
1

2
(â+ â

†) (2.1)

X̂2 =
1

2i
(â� â

†) (2.2)

In this form, it is apparent that these operators return the real and imaginary com-

ponents of the electromagnetic field, oscillating with frequency ! and a ⇡/2 phase

di↵erence:

Êx = 2E0(z)
⇣
X̂1 cos!t+ X̂2 sin!t

⌘

9



These operators are Hermitian and correspond to observables. Additionally, using

Eq. 2.1, 2.2 we find that the quadrature operators are non-commutative

[X̂1, X̂2] =
i

2

allowing us to define an uncertainty limit on quadrature variance via the Schrodinger

uncertainty relation:

h(�X̂1)
2ih(�X̂2)

2i � 1

16
(2.3)

We may calculate the expectation value of the quadrature variance in the coherent

states (i.e., ordinary laser light), and we find that it is a minimum uncertainty state

such that

h(�X̂1)
2i = h(�X̂2)

2i = 1

4
(2.4)

We refer to this state as the standard quantum limit (SQL), where the noise is re-

ferred to as shot noise. In Fig. 2-1, the coherent state is represented in the first phase

diagram. Here, the “ball” of noise is a perfect circle, representing two equal quadra-

ture noises. The distance from the origin represents the amplitude of the coherent

field whereas the angle ✓ represents the phase. This noise has a tendency to limit

light-based measurements where classical noise sources have been nearly eliminated.

However, this is not the end of the story. Via squeezed states, we can squeeze one

noise quadrature while stretching the other. This is represented as the second image

in Fig. 2-1. The ball of noise has been stretched and there exists a measurement

along the ball of noise such that, for the squeezed quadrature, �Xsq < 1/2.

In our work, we specifically study squeezed vacuum. Via our quantization of the

electromagnetic field, we define a vacuum state to be a quantum light state with a

photon number state of zero photons |0i such that, on average, the light field has zero

amplitude h0| Ê |0i = 0. Contrary to a classical picture of light, the vacuum state has
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nonzero quadrature fluctuations

h0| (�X̂1)
2 |0i = h0| (�X̂2)

2 |0i = 1

4

This is equivalent to the coherent state. Hence, we find that a naturally occurring

vacuum state |0i is in fact coherent vacuum. The existence of a coherent vacuum

with nonzero fluctuations leads to peculiar phenomena. For example, when a beam

is coupled into a single input port of a beam splitter, naturally occurring coherent

vacuum couples into the second input port, potentially adding noise to the measure-

ment. We may stretch these noise fluctuations like before, herein creating a squeezed

vacuum. A representation of coherent vacuum and squeezed vacuum may be seen in

Fig. 2.1. For a more in-depth treatment of squeezed states, see Reference [9].

Figure 2-1: Phase diagrams of di↵erent quantum states with illustrated quadrature
fluctuations.
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Chapter 3

Detection scheme

3.1 Homodyne detection

The quadrature operators X̂1 and X̂2 correspond to direct observables such that the

noise power of the amplitude and phase quadratures (respectively) may be measured.

However, this requires a phase-adjustable measurement to probe the quadrature that

is being squeezed (�Xsq < 1/2). Another problem to overcome is the very weak signal

of squeezed vacuum; we need to amplify the quadrature noise signal to an intensity

above electronic noise.

To overcome these challenges, we utilize a balanced homodyne detection

scheme. In this scheme, the weak signal of interest is mixed with a strong local oscil-

lator (LO) beam on a 50/50 beamsplitter. The two outputs of the beamsplitter are

then sent to two identical photodiodes. The photodiode signals are then subtracted:

this is referred to as a balanced photodetector (see Fig. 3-1).

We first consider two classical fields, a weak signal of interest with amplitude Es(t)

and a strong local oscillator with both an amplitude ELO(t) and an arbitrary phase

e

i✓ compared to the signal of interest. We can represent these amplitudes as

Es(t) = Es + �X1,s(t) + �X2,s(t) (3.1)

ELO(t) = [ELO + �X1,LO(t) + �X2,LO(t)]e
i✓
, (3.2)
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where Es and ELO are the mean-valued amplitudes, and X1(t) and X2(t) represent

respective time-varying quadrature fluctuations. When the beams are combined and

split on a 50/50 beam splitter, the output signals are the same except for a phase

shift introduced by the beam splitter:

E1 =
p

1/2ELO(t) +
p

1/2Es(t) (3.3)

E2 =
p

1/2ELO(t)�
p

1/2Es(t). (3.4)

The photodiodes measure the intensity of the fields, which are proportional to the

squares of the amplitudes |E1|2 and |E2|2. Taking a first order approximation,

|E1|2 � |E2|2 ⇡ 2ELO(�X1,s cos ✓ + �X2,s sin ✓) (3.5)

The variance of this signal is proportional to

4E2
LO[�X

2
1,s cos

2
✓ + �X

2
2,s sin

2
✓]. (3.6)

With homodyne detection, the quadrature fluctuations of the signal of interest are

amplified by the amplitude of the local oscillator. This allows us to raise the noise

level of our measurement above electronic noise. By controlling the phase ✓ of the

local oscillator compared to the signal, we can select the noise quadrature that we

measure. For ✓ = 0, we measure only X1,s. For ✓ = ⇡/2, we measure only X2,s.

3.2 Experimental setup

Our experiment is carried out with squeezed vacuum generated in hot atomic 87Rb

vapor cells. In this section, we describe the experimental setup of our hot atomic

squeezer (see Fig. 3-1). The output of a diode laser was tuned near the 52S1/2, F =

2 ! 52P1/2, F
0 = 2 transition of 87Rb (� ⇡ 795 nm). We sent the laser beam through

a single-mode optical fiber followed by a polarizer to prepare a high quality linearly

polarized pump beam with a Gaussian transverse profile. This pump beam was then
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Figure 3-1: The experimental setup for measuring squeezing and shot noise. We em-
ploy the following symbols: SMPM (Single mode polarization maintaining fiber),
�/2 (Half-wave plate), M (Mirror), SLM (Spatial light modulator), GP (Glenn po-
larizer), L (Lens), PBS (Polarizing beam splitter), 50/50 (50/50 beam splitter), and
BPD (Balanced photodiode).

focused inside a 7.5 cm long cylindrical Pyrex cell with isotopically enriched 87Rb

vapor without bu↵er gas. The focal lengths of the lenses before and after the cell

were adjusted to produce maximal squeezing. The vapor cell was mounted inside a

three-layer magnetic shielding and the number density of Rb atoms (always on the

order of 1011 to 1012 cm�3) was varied by adjusting the cell temperature. The input

laser power in the cell was controlled by rotating a half wave plate before the polarizer.

We use a detection scheme such that the LO and squeezed vacuum field are never

separated, allowing for theoretically perfect overlap of their spatial profiles. After

interaction with the atoms, the two fields initially have orthogonal linear polarizations.

The polarizations are then rotated by 45� with respect to the axis of a polarizing

beam splitter (PBS) using a half-wave plate. Hence the PBS splits the beam with

an equal 50/50 ratio, and each separated beam consists of the same amount of local

oscillator and squeezed vacuum intensities. After the PBS, the two split laser beams

are directed to the balanced photodiode.

To change the relative phase ✓ of the LO with respect to the vacuum, we send
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the beams through a phase-retarder. We use a quarter wave plate before the half-

wave plate and align it such that the ordinary and extraordinary axes coincide with

the laser beam polarizations. The alignment allows a phase shift for light of one

polarization without a↵ecting the orthogonally-polarized light. In this arrangement, a

small rotation of the quarter-wave plate introduces a controllable phase shift between

the squeezed vacuum and the LO beam.

To calibrate the shot noise, a PBS is inserted into the beam path before the

quarter-wave plate and set such that all of the squeezed vacuum is ejected and re-

placed with coherent vacuum. Weak absorption in the polarizer produces a small

loss, decreasing the shot noise level by nearly 0.2 dB. However, this correction is eas-

ily taken into account. In the following sections, the measured squeezing is taken to

mean the squeezing on the noise quadrature where the measured noise is maximally

below shot noise.

A spatial light modulator (SLM) is inserted either before or after the atomic cell

to manipulate the spatial profile of the beam (discussed in Chapter 4: Multi-mode

generation).

3.3 Signal analysis

To measure noise levels, we analyze the noise spectrum of the signal from the ho-

modyne detection (Eq. 3.6). To measure the noise power at di↵erent detection

frequencies, the spectral variance of the current from the photodetectors is measured

using a spectrum analyzer.

The spectrum analyzer combines the input current with an internally generated

oscillating signal to measure the beat frequency power. This allows us to probe

the amplitudes of sinusoidal modulations at specific frequencies. The mixed signal

passes through a narrowband filter per the resolution bandwidth. The final output is

averaged over time before being displayed. The noise power spectrum is most often
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displayed as a power ratio on a logarithmic scale in decibels,

dB = 10 log10(P/Pref ), (3.7)

where P is the power of the signal of interest and Pref is the power of a reference

signal. In this way, the noise power in a signal may be displayed as a function of

frequency.

When taking a squeezed noise measurement, shot noise is first measured by mixing

the local oscillator with coherent vacuum. The squeezed noise level is then measured

by comparing the relative noise powers of the signal to the shot noise level. A squeez-

ing level of �10 dB corresponds to noise that is reduced by a factor of 10. Our highest

measured squeezing to date has been �2.7 dB, comparable to the world record using

these methods [10].
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Chapter 4

Multi-mode generation

All previous experimental and theoretical analyses of PSR squeezing have assumed an

identical single spatial mode for both the strong pump and vacuum fields, particularly

limited to the Laguerre-Gaussian (LG) [10, 11] transverse profiles. The LG mode basis

is a natural basis for our system, as it exhibits cylindrical symmetry. The expression

of the field distribution for Laguerre-Gaussian modes is

LGp,l = up,l(r,�, z) =
C

LG
lp

w(z)

 
r

p
2

w(z)

!|l|

exp

✓
� r

2

w

2(z)

◆

L

|l|
p

✓
2r2

w

2(z)

◆
exp

✓
�ik

r

2

2R(z)

◆
exp(il�)

exp [i(2p+ |l|+ 1) arctan(z/zR)]

(4.1)

where l is the radial index and p is the azimuthal index.

When we theoretically describe the homodyne detection, we assume that the LO

and the squeezed vacuum field have the same spatial distribution. However, if the two

fields have nonequal spatial dependencies in the amplitude and phase distributions,

we describe the two states

Es (t) = [Es + �X1,s (t) + i�X2,s (t)] us (x, y) e
i�(x,y)

ELO (t) = [ELO + �X1,LO (t) + i�X2,LO (t)] uLO (x, y) ei✓ei�
0(x,y)
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in terms of the amplitude distributions us(x, y) and uLO(x, y), as well as the respective

phase distributions ei�(x,y) and e

i�0(x,y). The variance of the signal on the homodyne

detection then reads

�I

2
� ⇡ E2

LO�X
2
1,s

ZZ
|uLOu

⇤
s + u

⇤
LOus| cos (�) dxdy

�2

+E2
LO�X

2
2,s

ZZ
|uLOu

⇤
s + u

⇤
LOus| sin (�) dxdy

�2

+

✓
1� 1

2

ZZ
|uLOu

⇤
s + u

⇤
LOus|2dxdy

◆
E2
LO�X

2
1,2v

(4.2)

where � = (� + �

0 + ✓). We find that the detected signal no longer has a simple

dependence on the phase di↵erence ✓. Now, we worry about coherent vacuum �X

2
1,2v

coupling into our detector and substantially decreasing the amount of squeezing we

observe.

Figure 4-1: Left: The first four Laguerre-Gaussian mode intensity distributions, dis-
tinguished by the mode numbers (p, l). Right: The intensity profiles of the local
oscillator after interaction with atoms. The atomic density of the medium increases
from 1.4 ⇥ 1010 cm�3 to 1.1 ⇥ 1013 cm�3 from left to right. The bottom left image
corresponds to the atomic density that leads to optimal squeezing. The bottom right
image corresponds to the highest atomic density interaction and degraded squeezing.

If the pump, local oscillator, and squeezed fields all remained in the same LG00

mode (Fig. 4-1, left), we need not worry about mode mismatch in the homodyne de-

tection. However, we have reason to believe that they do not. Previous experiments

in our group revealed the strong dependence of squeezing on spatial structure. Specif-
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ically, applying spatial ring masks to the squeezed field degrades squeezing beyond

the theoretical predictions for a beam with no spatial dependence [7].

Figure 4-2: LG mode decomposition of a low atomic interaction beam (top) and a
high atomic interaction beam (bottom). The LG mode coe�cients for each beam are
displayed.

A theoretical model that incorporates the possibility of di↵erent spatial modes

predicts that during the PSR light-atom interaction, the first five LG modes where

(p = 0, 1, 2, 3, 4; l = 0) will be generated in the squeezed field [7]. Moreover, the

di↵erent modes may squeeze by di↵erent amounts and at di↵erent squeezing angles

✓. The combination of these di↵erent squeezing angles may degrade overall detected

squeezing.

Using a quantum noise-limited camera (described in Chapter 6: Quantum imag-

ing), we monitored the intensity distribution of the local oscillator as the atomic

density was increased (Fig. 4-1, right). Here, higher atomic density corresponds to a

19



stronger nonlinear PSR e↵ect. The first frame corresponds to the image of the input

Gaussian pump beam after traveling through the atomic cell with low atomic den-

sity. We see that it interacts with the atoms very weakly, if it at all. As the atomic

density is increased via an increase in temperature, the beam grows wider. At high

atomic density, distinct higher order LG modes dominate the intensity distribution

and squeezing is degraded.

The LG modes form a complete basis: any image may be decomposed using a

linear combination of LG modes. By taking an overlap integral between the image

and the first few LG modes, we are able to identify the coe�cients of the modes in

the mode decomposition (Fig. 4-2). We find that the beam which passes through

the minimal atomic density (1.4⇥ 1010 cm�3) is primarily composed of the Gaussian

mode (LG00). The beam that has passes through the maximal atomic density (1.1⇥

1013 cm�3 ) is composed of several higher order modes, as expected.

20



Chapter 5

Spatial mode optimization

5.1 Pump beam optimization

Previous measurements conducted by our group have shown that squeezing may be

improved by using an optimal mode structure of the pump beam incident on the

atoms [7]. By using the local oscillator from one atomic cell as the pump beam for

a second atomic cell, squeezing may be substantially improved. This motivates our

search for an optimized pump beam mode structure. While a fundamental Gaussian

mode structure is typically used for the pump beam, there may exist a mode structure

that induces fewer higher order modes and thus preserves squeezing.

To control the transverse phase profile of the pump beam, we reflect it o↵ of the

surface of a liquid-crystal-based spatial light modulator (SLM) before sending it into

the atomic cell (see Fig. 3-1). An SLM is an electrically programmable device that

modulates light phase according to a spatial pattern. In our case, we are specifically

modulating the relative phase of each pixel, with a pixel area of 15 ⇥ 15 microns.

By electrically controlling the individual phase shift of each pixel and reflecting our

beam o↵ of the surface of the SLM, we can subject our beam to arbitrary phase shift

profiles.

After calibrating our SLM using a phase-modulating method, we began looking

to alter the phase distribution of the pump beam to optimize the squeezing factor of

the squeezed vacuum. We have thus-far studied an optimization method where the
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coe�cients of Laguerre-Gaussian modes are altered until squeezing is optimized. By

projecting the phase distribution of this equation for a specific mode onto the SLM,

we may recreate the phase distribution in the beam associated with that mode. In

Fig. 5-1, di↵erent intensity distributions for LG modes are plotted with the associated

phase distributions. Using this technique, we have been able to recreate beams with

identical phase distributions.

Figure 5-1: Top: The normalized intensity distributions for three di↵erent LG modes.
Bottom: The phase distributions associated with the mode intensity distributions
directly above.

Our LG mode optimization employs a Metropolis-type annealing algorithm. In

1953, Metropolis, Rosenbluth, and Teller devised an algorithm which can mimic the

distribution of system states according to energies of the states and the overall tem-

perature of the physical system via the Boltzmann energy distribution law. This law

states that the probability to find a state with energy E is given by

p(E) ⇠ exp

 
� (E � E0)

kBT

!
, (5.1)

where kB is the Boltzmann constant, E0 is the minimum energy state, and T is the

temperature of the system. When E = E0, the probability of this state is p(E) = 1.

As E grows larger than E0, the probability decreases.

The goal of the algorithm is to reach the minimum “energy” state of the system.
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In our experiment, energy is replaced by the detected squeezing factor. Our algorithm

functions as follows:

1. Initialize the system to a value such that kBT is larger than the energy function
fluctuation.

2. Assign a beam waist w and a vector of real and imaginary coe�cients [c1, c01, . . . , cN , c
0
N ]

for N LG modes.

3. Set the SLM to correspond to the phase of the LG mode pattern. The phase
mask applied to the beam is

�(x, y) = arg
⇣ NX

p,l

(cpl + ic

0

pl)LGpl(w, x, y)
⌘

(5.2)

where LGpl is the mode distribution, w is the beam waist, and cpl, c

0
pl are

coe�cients for mode (p, l). The mode distribution generated via the LG mode
equation, Eq. 4-1.

4. Measure the squeezing, E, using this mask.

5. Change the LG mode parameters.

6. Reset the SLM and measure the new squeezing, Enew.

7. If Enew < E, then accept the new parameters and set E = Enew. If Enew > E,
then we accept the new parameters with the probability

p = exp

 
� (Enew � E)

kBT

!
.

8. Decrease the temperature.

9. Repeat steps 5-8 for a given number of cycles.

Given enough cycles, an approximate global optimum may be reached. The advan-

tage of this algorithm is its probabilistic acceptance of worse solutions, which allows

for a more extensive search for the optimal solution. In this way, the algorithm is less

likely to be locked into a local minimum.

Our optimization routine was run with several di↵erent combinations of modes in

the parameter space. However, only higher order p-mode studies are reported below.

We compared the optimized squeezing of two di↵erent parameter space compositions:
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Figure 5-2: Top: Optimization run with optimal squeezing conditions. (a) Pump
beam subject to a flat phase mask. (b) The residuals between the original beam and
the optimized beam. (c) The LG mode coe�cients used to create the optimized beam.
Bottom: Optimization run with suboptimal squeezing conditions. (a) Pump beam
subject to a flat phase mask. (b) The optimized beam. (c) The LG mode coe�cients
used to create the optimized beam.

(1) modes with p = �5 : 5 and l = 0, and (2) modes with p = �10 : 10 and

l = 0. In our first studies, the temperature of the atomic cell was set to produce

maximal squeezing, such that we had an atomic density of 9⇥ 1012 cm�3. Measured

squeezing was 2.0 dB below shot noise. When the pump beam was reflected o↵ of

the SLM surface with a flat phase mask, the same squeezing remained. Running the

optimization program with five modes (case 1), squeezing was improved to 2.3 dB

below shot noise. The ten mode optimization (case 2) yielded �2.1 dB of squeezing.

Fig. 5-2, top left, is an image of the case 1 beam after interaction with the flat

phase mask of the SLM and before interaction with the atoms. On the right is an

image of the residuals between the flat phase mask beam and the optimized beam,

where the phase mask has been set to display the combination of LG mode phase
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shifts that optimize squeezing via the optimization algorithm. The change in the

spatial structure of the beam is not visible to the eye, but we see some structure in

the residuals. It seems the center of the beam grows weaker whereas the edges grow

stronger. Indeed, this is what the mode coe�cients used to create the optimized

beam reveal: the LG00 and LG20 mode seem almost comparable in power.

We also studied the optimization process using a suboptimal atomic density for

squeezing (6⇥1011 cm�3). With a flat phase mask, the detection returned �0.7 dB of

squeezing. When the optimization routine was run, the squeezing improved to �1.2

dB, a 0.5 dB improvement. Unlike before, it is visibly apparent that the optimized

combination includes non-negligible higher order mode coe�cients (Fig. 5-2, bottom

right). The coe�cients reveal that the new beam is in fact dominated by higher

order modes. This large improvement in squeezing in an atomic density region that

was once unusable for squeezing holds great promise. By optimizing the pump beam

structure for di↵erent experimental conditions, PSR squeezing becomes highly more

robust and versatile.

5.2 Local oscillator optimization

Previous work in our group demonstrated that excitement of higher order modes

during the atom-light interaction may lead to imperfect mode match between the

squeezed field and the local oscillator, limiting the amount of squeezing observed

[7]. We moved the SLM after the squeezer to change the LO mode structure and

see if we could find a good mode match between the LO and the squeezed vacuum.

At optimal squeezing conditions, we measured �1.8 dB of squeezing with the SLM

bypassed using mirrors. The beam was then reflected o↵ of the surface of the SLM.

When the SLM was powered o↵, squeezing is only slightly degraded. When the SLM

was powered on with a flat mask, we measured �1.0 dB of squeezing, a great loss.

This loss may be explained by noise in the SLM. To alter the phase shift of the

liquid crystals in the SLM, a voltage is applied. This voltage induces small oscillations

in the liquid crystals. Such oscillation becomes a fluctuation in the phase distribution
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of the mask, therefore changing the detected noise: by phase modulating the local

oscillator, the detection scheme will cycle through quadratures and the average noise

on average will be worse. Hence, unless we can resolve the oscillation e↵ect, we will

be unable to optimize the local oscillator spatial pattern. We continue to investigate

this phenomenon.
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Chapter 6

Quantum imaging

Previously, we have been unable to observe the squeezed vacuum beam directly with

a camera as most cameras are limited by dark noise surpassing beam photon counts.

In our work, we utilize a Princeton Instruments PIXIS series quantum noise-limited

camera with sensors sitting in an ultra low temperature environment to reduce the

thermal noise and the electronic noise. Each of the 1024 ⇥ 1024 pixels on the screen

can detect photon counts of as low as a few hundred in a short exposure time. Each

count corresponds to four photons incident on the pixel.

Figure 6-1: The experimental setup for measuring twin beams incident on the camera.
A Glenn polarizer is placed after the atomic cell to allow for imaging of both the local
oscillator and the squeezed vacuum. See Fig. 3-1 for defined abbreviations.
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By analyzing beam images taken over a short period of time, we may identify the

noise statistics of the beam. It is crucial that the images are taken on a short enough

time scale such that classical noise in the laser amplitude does not dominate the noise

distribution. Suppose we have a collection of images of a coherent beam. By taking

photon statistics along the entire collection at each pixel, we find that the average

photon number on each pixel is N and variance is �N

2. For the coherent beam, we

would have
�N

2

N

= 1

It is important to note that in practice, each count corresponds to four photons

incident on the pixel, so we apply a multiplicative scaling.

6.1 Twin beam subtraction

Figure 6-2: An image of the split beams incident on the camera. The polarizer has
been set between the local oscillator and squeezed field polarizations to allow both
beams through.

By observing the statistics of each pixel individually, we may identify noise “modes”

in the beam. Our initial measurements revealed that classical noise was dominating

our setup. Hence, we split the beam after the atoms into two beams and project both

beams onto the camera screen (see Fig. 6-1). We developed a method for digitally

overlapping and subtracting the two beams. In Fig. 6-2, we plot the beam intensities

28



corresponding to a beam where the polarization is between that of the local oscilla-

tor and the squeezed field. Again, we see the clear influence of higher order modes.

Ideally, we want to determine whether the spatial modes of the beam carry di↵erent

noise statistics.

Variance vs. photon counts
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Figure 6-3: Variance versus photon counts for the twin beams incident on the camera.
The variance statistics are taken from the subtracted beams. The intensity statistics
are taken from the summed beams. The red line corresponds to the calibrated shot
noise limit.

We plot the time-averaged noise statistics in Fig. 6-3. The calibrated shot noise

limit that corresponds to a perfectly coherent beam is plotted. We see several dis-

tinct fumes in the variance versus intensity statistics. By matching the fumes to

spatial patterns in the intensity profile, we identify a distinct “wedge” shape. This

corresponds to the physical shutter of the camera flicking in and out of the beam.

We find that it adds classical noise to our measurements. We cannot simply disable

the shutter as the camera needs a dark period to process the images. To solve this
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problem, we disabled the physical camera shutter and introduced an acoustic-optical

modulator (AOM) before the SMPM fiber to di↵ract the beam away from the fiber

port during camera processing time, i.e., we implement a faster, more robust shutter.

Figure 6-4: Variance versus photon counts for the twin beams after introducing an
AOM in place of the physical camera shutter. The intensity map is plotted on top of
the statistics to illustrate which pixels correspond with which noise fumes.

Using this new technique, we find that two of the four noise plues disppear, leaving

us with a distinct linear plume and a distinct quadratic plume. In Fig. 6-4, we plot

three di↵erent noise groups for the fumes: (1) dark noise (dark blue), (2) quadratric

noise (yellow), and (3) linear noise (teal). We also plot the intensity image with

pixels colored with the corresponding noise group. We find that there indeed exists a

splitting in noise statistics in the beam mode structure. Referring back to Fig. 6-2, we

compare the beam structure with the statistics. The center of the beam corresponds

to the quadratic-with-intensity noise and the outer ring of the beam corresponds to

linear noise. Typically, classical noise is quadratric whereas quantum noise is linear.
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As of yet, we cannot say anything definitive about the noise modes: our analysis is

preliminary and we are continuing to improve our detection methods.

6.2 Kinetic mode subtraction

In the time-averaging regime, we typically measure the beam across 1000 frames and

this takes around ten minutes. Across ten minutes, our laser can drift substantially,

introducing classical noise. Additionally, our twin beam subtraction scheme intro-

duces additional spatial noise in our measurement. If the two beam splitter out ports

have imperfections, the beams will di↵ract di↵erently and exhibit di↵erences in higher

order noise. In addition, particles on the camera surface will cause di↵erences in beam

spatial structure. To avoid these complications, a superior imaging procedure would

involve subtracting the beam from itself after a short enough time di↵erence such

that the beam cannot substantially shift.

To implement the measurement of images in quick succession, we implement a

“kinetic mode” on the camera where the total active sensor area on the camera is

divided into several frames. Here, the active area is rapidly shifted and processed.

This allows us to take images separated by less than a few ms, su�cient to avoid

excess noise from the laser. Hence each super frame contains five sub frames. We

record 1000 image sequences and use the third and fourth sub frames for analysis,

as they exhibit they exhibit the most similar backgrounds. The beams were then

subtracted, leaving us with 1000 super frames of subtracted beams.

Preliminary measurements using this new subtraction scheme exhibit extremely

low noise. When analyzing a coherent beam with this method under specific condi-

tions, we observe a noise versus intensity ratio consistent with theory

�N

2

N

= 1

Moving forward, we are working to measure the squeezed field using this new tech-

nique.
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Chapter 7

Conclusions and outlook

In this report, we have demonstrated improved squeezing through mode optimization

of the pump beam. The LG mode optimization improved squeezing by 0.3 dB. We

have reason to be optimistic: it is likely that these studies may have only yielded

a local minimum. Higher quality mode combinations that have not been probed by

our optimization algorithm likely exist. We will next run a Hermite-Gaussian mode

optimization, as this may be better suited for our square SLM screen.

We have also demonstrated that the power of the strong beam is redistributed

from the Gaussian mode into higher order modes during the nonlinear light-atom

interaction. By increasing the temperature and thus the density of the atoms, we

may watch the power redistribute into other higher order modes. By using the spatial

mode pattern identified in Fig. 4-2 as input for the SLM to tailor the pump beam,

we may further improve squeezing.

In addition, we are now taking preliminary measurements of the beam spatial noise

statistics using our quantum noise-limited camera. By monitoring the noise-intensity

ratio across the pixels of the beam, we may discern which spatial portions of the beam

squeeze more strongly than others. In this way, we may identify the squeezing mode

pattern and study how its properties relate to overall squeezing. Ultimately, these

studies are bringing us closer to understanding PSR squeezing and perhaps unlocking

amounts of squeezing that have not previously been achieved with this method.

Our improved techniques for squeezing light are highly relevant to the cutting-edge

32



of many fields of research. Earth-based gravitational wave detectors rely on minute

changes in optical resonator frequencies, resolving a fundamental quantum limit upon

which gravitational waves might be detected. Reducing quantum noise moves us

closer to a new era of observational astronomy [12]. In addition, quantum squeezing

is applicable to innovative e↵orts in quantum computing. The squeezed state is ideal

for probing quantum memories in order to retrieve their stored information [13].

Similarly, optical atomic clocks and magnetometers may be made more precise than

ever before through utilization of squeezed input [9]. Squeezed light holds the key to

the development of a modern tool set for the next stage of scientific progress.
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