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Abstract

High precision optical detection is fundamentally limited by quantum noise.

This limit can be bypassed with the use of squeezed states of light with modified

quantum noise. We study squeezed states of light with a focus on optimization of

squeezing generated via polarization self-rotation (PSR) in hot rubidium vapor. The

goal of our research is to reduce quantum noise by optimizing cell temperature and

beam shape of the input pump field. We find that computerized spatial optimization

algorithms (combined with manual optimization of temperature and laser detuning)

are successful in improving squeezing levels, with one spatial mask yielding over 1.0

dB of squeezing improvement under certain conditions. We have achieved quantum

noise suppression of 2.3 ± 0.1 dB below shot noise.



Chapter 1

Introduction

1.1 Precision Measurements

Progress in experimental physics is limited by the precision of measurements. In the

realm of optical measurements, precision is limited by classical and quantum noise.

Noise can be thought of as fluctuations or uncertainty in a measurement. Classical

noise stems from factors such as vibrations or laser drift. These sources of noise can be

greatly reduced–if not eliminated–in modern experiments. Quantum noise, however,

is more fundamental and thus more difficult to suppress. The goal of our research is

to reduce optical quantum noise by optimizing cell temperature and beam shape of

the input pump field.

1.2 Quantum Noise

For any quantum measurement, there is some level of inherent uncertainty. This un-

certainty is governed by the Heisenberg Uncertainty Principle. This principle dictates

that a pair of observables cannot be simultaneously known beyond a certain level of

precision. The standard example of paired observables in quantum mechanics involves

position and momentum. In quantum optics, the two observables are amplitude and

phase. If we define corresponding quadratures X̂1 and X̂2, then the uncertainty is
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expressed as ∆X̂1∆X̂2 ≥ 1
4
. Given this uncertainty principle, the lowest achievable

noise using standard techniques is the shot noise, when ∆X̂1 = ∆X̂2 = 1
2
. In order

to drop the noise below the shot noise, we must use nonclassical states of light.

1.3 Squeezed States

Squeezed light is a nonclassical state which has modified quantum noise. If we think

of the quantum noise distribution as a round balloon, then the two quadrature un-

certainties are orthogonal dimensions of the balloon. If we squeeze the balloon along

one axis, then the size decreases along that axis and increases along the perpendicular

axis. The total volume does not change but the distribution of the sizes does. Like-

wise, in a squeezed state, the product of ∆X1∆X2 is unchanged. However, the noise

is reduced in one quadrature and increased in the other. The quadrature with re-

duced quantum noise is ‘squeezed’ and the quadrature with increased quantum noise

is ‘antisqueezed’.

1.4 Applications

Squeezed light can increase the precision of any optical, shot noise limited mea-

surement. For example, with squeezed light, gravitational wave detectors–or more

generally, interferometers–can resolve signals that would otherwise be masked by the

shot noise. A comparison of a simulated signal with and without squeezing is shown

in Fig. 1.1. In Fig. 1.1a, there are clearly two peaks and potentially a third centered

at 100 Hz. It is, however, impossible to say with certainty since the amplitude of

the peak is roughly the amplitude of the noise. However, in Fig. 1.1b, the noise is

reduced and the peak centered at 100 Hz is resolved from the noise.
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(a) Simulated signal (b) Signal with reduced noise

Figure 1.1: A simulated signal of absorption vs. frequency. (a) shows the raw signal.
(b) shows the signal with -4 dB of squeezing, which correlates to a reduction in noise
amplitude by a factor of 1.6.

1.5 Generation and Optimization of Squeezing

Squeezed states can be produced via nonlinear light-atom interactions. One method of

generating squeezed states is polarization self-rotation (PSR) [1], [2]. We specifically

explore PSR in hot rubidium vapor. Although other methods of squeezing exist, we

study PSR because it requires a relatively simple experimental setup, it can be made

compact, and has low power requirements.

One way to improve squeezing is to optimize the spatial profile of the pump beam.

Profile shaping masks have been shown to increase squeezing [3]. We manipulate the

spatial profile by applying ’masks’ on a spatial light modulator (SLM). However, only

relatively simple shaping masks have been used in previous research. We explore more

complex spatial profiles to enhance squeezing. We also expand upon the work done by

Zhang to implement a feedback regime that will help optimize the spatial profile [4].

In this report we discuss the theoretical basis of our work, our experimental methods,
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the optimization algorithms used, and our results.
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Chapter 2

Theory

2.1 Quantization of the electromagnetic field

A classical electromagnetic field propagating in the ẑ directions is given by

~E = ~E0(z)ei(ωt+φ) (2.1)

where E0 is the amplitude, ω is the frequency, and φ is the phase. We can quantize

this by rewriting it in terms of creation and annihilation operators [3], [5]

Ê = E0(z)
(
âe−iωt + â†eiωt

)
(2.2)

In quantum optics we work with quadratures. Although we generally refer to them

as ‘amplitude’ and ‘phase’ quadratures, they actually lack physical meaning until we

apply them relative to something else. The quadrature operators are [3]

X̂1 =
1

2
(â+ â†) (2.3)

X̂2 =
1

2i
(â− â†) (2.4)

We can now rewrite our electromagnetic field as [3], [4]

Êx = 2E0(z)
(
X̂1 cosωt+ iX̂2 sinωt

)
(2.5)
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For any state, the minimum uncertainty is governed by the Heisenberg Uncertainty

Principle, such that the product of the two quadratures ∆X̂1 and ∆X̂2 is greater than

a certain value

∆X̂1∆X̂2 ≥
1

4
(2.6)

This inequality is true for any state. A coherent state exists when the quadrature

uncertainties are equal

∆X̂1 = ∆X̂2 =
1

2
(2.7)

A laser beam is most accurately described by a coherent state. For a squeezed state,

the quadrature uncertainties are not equal

∆X̂squeezed <
1

2
(2.8)

∆X̂antisqueezed >
1

2
(2.9)

A ‘noise ball’ is a visual representation of the distributions of the two quadratures.

Fig. 2.1 shows the noise balls for the coherent state and squeezed coherent state.

Fig. 2.2 shows the noise balls for the coherent vacuum and squeezed vacuum states.

These noise balls are identical to those in Fig. 2.1 but are translated to the origin

because the vacuum state has zero amplitude. Because phase is defined relative to

amplitude, both phase and amplitude lose their physical meanings in the vacuum

state until the vacuum is measured relative to a non-vacuum state. Because of this,

we can ‘rotate’ the vacuum squeezing about the origin so that we can ‘apply’ it to

the quadrature of our main beam that we want to be squeezed.

2.2 Polarization Self-Rotation

Polarization self-rotation (PSR) is a nonlinear light-atom interaction that generates

squeezing. PSR requires a medium that produces self-rotation of elliptically polarized
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(a) (b)

Figure 2.1: Coherent and squeezed noise balls [3]. (a) shows the coherent state, in
which the noise in the two quadratures is equivalent. (b) shows a squeezed state, in
which one of the quadratures is squeezed and the other is antisqueezed.

light. When linearly polarized light propagates through this medium, a squeezed

vacuum state can be generated in the orthogonal polarization relative to the input

field. Even if the input field (propagating along ẑ) is linearly polarized along ŷ there

are still vacuum fluctuations along x̂. This combined field is therefore elliptically

polarized and will generate squeezing [1].

We use hot rubidium vapor as our medium, with our laser detuned to the 87Rb

D1 line. For this setup, Matsko et al. predict squeezing of approximately -4 dB below

shot noise [1]. The current experimental world record for PSR squeezing is -3 dB [6].

We are attempting to improve it with our novel optimization methods.
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(a) (b)

Figure 2.2: Coherent vacuum and squeezed vacuum noise balls [3]. (a) shows the
coherent vacuum, in which the noise in the two quadratures is equivalent. (b) shows
a squeezed vacuum state, in which one of the quadratures is squeezed and the other
is antisqueezed. The vacuum states have zero amplitude except for quantum fluctu-
ations in the amplitude quadrature. Therefore, their noise balls are centered at the
origin.
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Chapter 3

Methods

3.1 Experimental Design

Our experiment is carried out on a single optical table. The set up is shown in Fig. 3.1.

We use a 30 mW, 795 nm diode laser as our pump field. The laser is tuned within ±

300 MHz of the F = 2→ F ′ = 2 transition of 87Rb D1 line. Laser detuning (within

the aforementioned range) is one of our manually optimizated parameters. Squeezing

is also observed near the F = 2 → F ′ = 1 transition. We use a single-mode optical

fiber to clean up the spatial profile of the beam before using it in our experiment. The

fiber yields a spatial Gaussian beam. However, the price we pay for this clean beam

is a ∼ 50% power loss. To mediate this power loss, we added a BoosTa (Toptica)

solid state optical amplifier to our setup. With this addition, we have upwards of 16

mW of power. We then pass the beam through a beam splitter to send the beam

to a reference cell containing 85Rb and 87Rb. We use this cell to control detuning of

the laser. Next, we bounce the beam off of a spatial light modulator (SLM) which

modifies the spatial profile of the beam. The SLM is controlled by optimization

algorithms which use feedback from our detector to improve squeezing. After the

SLM, we use a lens to focus the beam inside a 7.5 cm cell containing 87Rb. There is

a flip mirror just before the cell that allows us to view the beam on a camera so that
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Figure 3.1: Experimental Setup. λ/2 is a half-wave plate, SMPM is a single-mode
polarization-maintaining fiber, BoosTa is a solid state optical amplifier, L is a lens,
PBS is a polarizing beam splitter, PD is a photodiode, SLM is a spatial light modu-
lator, GP is a Glan-laser polarizer, FM is a flip mirror, LO is the local oscillator, SqV
is the squeezed vacuum, PhR is a phase-retarding wave plate, and BPD is a balanced
photodetector. Not all elements are shown.
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we can see what the input beam looks like before interacting with the 87Rb. There

is no buffer gas in the cell. The cell is housed inside a magnetic shielding to prevent

any interference from external magnetic fields. We manipulate the atomic density in

the cell by changing the cell temperature. During data collection, the temperature

is held constant with a PID temperature controller. After the cell, we implement a

homodyne detection scheme to detect the phase-dependent squeezing. We also have

the option of imaging the beam with a shot noise limited camera.

While spatial laser beam optimization is computerized, we manually optimized

four parameters—laser detuning, laser power, cell position, and cell temperature.

3.2 Homodyne Detection

We used a balanced homodyne detection scheme, shown in Fig. 3.2, to detect minus-

cule vacuum fluctuations. The first PBS is used to calibrate against the shot noise.

(a) (b)

Figure 3.2: Homodyne detection scheme. In our experiment, the pump field is the
LO. The squeezed vacuum (SqV) is generated in the 87Rb cell. (a) shows how the
SqV is rejected by the PBS so that the BPD measures shot noise. (b) shows how the
LO and SqV propagate together, are phase separated by the PhR, and are sent to
the BPD to measure squeezed noise.

When the PBS is in the beam path, it rejects the generated squeezed vacuum and

injects a coherent vacuum. This eliminates any quantum noise modification and the

spectrum analyzer displays the shot noise. The shot noise is related to the number
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of photons, n, in the local oscillator (LO) field

Shot Noise =
√
n (3.1)

When the PBS is not in the beam path, the squeezed vacuum and LO are sent to

the spectrum analyzer and we obtain the squeezed noise. The amount of squeezing

is simply the ratio of squeezed to shot noise levels.

3.2.1 Experimental Detection

The second PBS is a 50/50 beamsplitter that sends half of the fields to each of the

two photodetectors. The half-wave plate is used to rotate the polarization and in

turn balance the amount of light on each photodetector. The phase-retarding plate is

used to change the relative phase, φ, between the LO and squeezed vacuum, which is

needed in order to optimize the observed squeezing. The homodyne detection scheme

allows us to amplify a weak signal. We can write the amplitudes of the squeezed

vacuum and LO as

As(t) = ∆X1,s(t) + ∆X2,s(t) (3.2)

ALO(t) = [ALO + ∆X1,LO(t) + ∆X2,LO(t)]eiφ (3.3)

where As and ALO are the mean amplitudes, the ∆X terms are quadrature fluctu-

ations, and φ is the relative phase between the squeezed vacuum and LO. So the

amplitudes incident on the photodetectors D1 and D2 are now

A1 =
1√
2
ALO(t) +

1√
2
As(t) (3.4)

A2 =
1√
2
ALO(t)− 1√

2
As(t) (3.5)

The photodetectors produce a current proportional to the amplitudes squared. When

we subtract the squared amplitudes, we get

|A2
1| − |A2

2| ≈ 2ALO(∆X1,s cosφ+ ∆X2,s sinφ) (3.6)
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This means that we obtain a signal that is proportional to the amplitude of the strong

field. In our experiment, this means that we amplify the quantum fluctuations by

the amplitude of the LO. The signal is also dependent on φ. Because of this, we can

pick out what quadrature we look at by changing the angle of the phase-retarding

plate controlling φ. Rotating the phase-retarding plate is analogous to rotating the

squeezed noise ball of Fig. 2.2b about the origin. At some phase difference φsq the

squeezed noise ball is oriented in such a way that the squeezing is maximized. φsq

can be calculated [1], but in practice we ‘find’ φsq by rotating the phase-retarding

plate orientation until squeezing is maximized. At a phase difference φanti = φsq + π
2

antisqueezing is observed.

3.3 Spatial Profiling

One of the main aspects of our research is spatial intensity and phase profile manip-

ulation of the pump field. We achieve these manipulations via an SLM. We use a

reflective liquid crystal phase-only SLM with a display size of 512x512 pixels. Each

pixel is 15 x 15 µm. By manipulating the voltage applied to each pixel, the SLM is

able to rearrange the liquid crystals and in turn change the phase of each pixel. A

simple cross section diagram of our SLM is shown in Fig. 3.3.

The phase-only SLM is only designed to manipulate the phase of the incident

beam, as the name suggests. However, we are interested in manipulating both the

phase and amplitude of the beam. The trivial way of doing this is to use two SLMs in

the beam path– one phase-only SLM and one amplitude-only SLM. This method is

relatively simple to implement but using two SLMs is more expensive and results in

more power loss than using a single SLM. The nontrivial way is to encode the phase

and amplitude into a single phase-only SLM, which we did using equations derived

by E. Bolduc et al. [7]. We wrote a function in MATLAB that produces a phase
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Figure 3.3: Cross section diagram of a phase-only SLM. Different voltages at each
pixel correlate to different liquid crystal arrangements and therefore different pixel
phases. Image from Meadowlark Optics.

mask for the SLM from any desired combination of amplitude and phase profiles.

The function inputs are 512x512 amplitude and phase arrays, ‘A’ and ‘phs’. We first

calculate M , a “normalized bounded positive function of amplitude” [7]

M = 1− 1

π
sinc−1(A) (3.7)

We then calculate F , an “analytical function of the amplitude and phase profiles of

the desired field” [7]

F = phs− πM (3.8)

Finally, we create a phase mask array based on M and F

SLM phase mask = M ∗Mod(F + 2π(−m)/Λ, 2π) (3.9)

where m is the horizontal pixel coordinate with 1 ≤ m ≤ 512 and Λ is the blazed

grating period. Flipping the sign in front of m flips the direction of the blazing. The

SLM phase mask produced by the function is a 512x512 array. Each element of the

14



array determines the voltage applied to the corresponding pixel on the SLM.

Using the function described above in addition to others that we wrote, we are able

to take any image and translate it to the SLM so that a reflected beam will produce

the same image. An example of this is shown in Fig. 3.4. While this arbitrary photo

(a) Desired image (b) Image as seen on camera

Figure 3.4: Desired and resulting image produced by SLM on camera. The dark spots
on the camera image are dust particles, not errors in the image formation.

demonstrates the capabilities of our functions and SLM, such an image exhibits poor

squeezing and is not actively studied. We instead use more geometric images that are

produced on the computer (generally by algorithms). Our reason for manipulating the

spatial profile of the pump beam is twofold. First, such manipulation has been shown

to improve squeezing [3]. Second, reshaping the pump beam may result in better

mode-matching of the squeezed vacuum and LO. Better mode matching results in

better observed squeezing.
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Chapter 4

Temperature Optimization

Squeezing is temperature dependent. Given that PSR is a light-atom interaction,

there must be photons and atoms interacting in order to produce squeezing. For

this interaction to occur, we need a laser detuned properly and an adequate atomic

vapor density. We control the vapor density via the temperature of the cell. The

relationship between vapor pressure (in atm) and temperature is given by [8]

Solid Phase : log10 PV = 4.857− 4215

T
(4.1)

Liquid Phase : log10 PV = 4.312− 4040

T
(4.2)

Atomic density can be derived from the Ideal Gas Law, giving

Atomic Density =
N

V
=

PV
kBT

(4.3)

The vapor density of 87Rb versus cell temperature is shown in Fig. 4.1. Before at-

tempting to optimize the spatial profile of the beam (many-parameter optimization)

we started by optimizing the cell temperature (atomic density), which is a relatively

easy one dimensional optimization. We measured squeezing versus temperature across

a wide range of temperatures. These measurements were taken with a ‘blank phase

mask’, which means that there was no spatial profiling. With this mask, the SLM

acts as a mirror. A plot of this data is shown in Fig. 4.2. The optimal temperature
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Figure 4.1: Density vs. Temperature for 87Rb

for squeezing is between 69-70°C, with squeezing of 2.3 ± 0.1 dB below shot noise.

Because of the size of the error bars, we are unable to resolve the optimal temperature

to more than a degree or so. The corresponding optimal atomic density is approxi-

mately 7.12× 1011 atoms
cm3 .

Further experimentation showed that this optimal temperature only holds true

when the focal point of the beam is at a certain position in the 87Rb cell. If we move

the 87Rb cell closer to the SLM, the focal position moves and thus the optimal tem-

perature changes. A preliminary plot of squeezing versus temperature at a position

2.3 cm closer to the SLM is also shown in Fig. 4.2.
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Figure 4.2: Squeezing versus temperature with a blank phase mask on the SLM for
the old and new positions. The solid blue line represents the amount of squeezing at
the old position. The solid orange line represents the amount of squeezing with the
87Rb cell 2.3 cm closer to the SLM

18



Chapter 5

Spatial Profile Optimization

We use three methods of spatial profile optimization, each with a different number

of optimization parameters. The methods are, in order of increasing number of pa-

rameters: lens optimization, ring optimization algorithm, and cluster optimization.

As the parameter space increases, so does the complexity of the optimization. And

as complexity increases, so does the computational time. Because of this, the most

efficient method of optimization is to start with a simple spatial optimization (few

parameters) and then ‘fine tune’ the optimization by adding more parameters. In

practice, we start with the simplest optimization and then use its output as the input

for the higher order optimizations. All three methods have shown improved squeezing

over a blank SLM.

5.1 Lens Optimization

Our simple spatial optimization is lens optimization. In addition to using the SLM

like an LCD projector, we can use it like a variable focal length lens. We work with

inverse focal lengths instead of focal lengths because they are more convenient and

give us a way to bound our search. A lens with an infinite focal length acts like a flat

mirror. The blank SLM also acts like a mirror. That being said, we want an algorithm

that represents an infinite focal length with ‘0’ so that the sum of the blank SLM and

19



an infinite focal length lens results in a blank SLM (mirror). By using inverse focal

length, an infinite focal length corresponds to ‘0’, which results in zero correction to

the SLM. In our algorithm, we have two parameters: spherical and cylindrical focal

lengths.

Our lens optimization algorithm starts with an initial guess for inverse focal

lengths. The algorithm then uses a merit function to find the optimal squeezing

by changing the inverse focal lengths and measuring squeezing. The algorithm stops

when squeezing is no longer improved by changing the spherical or cylindrical param-

eters. We measured squeezing versus temperature after running the lens optimization

algorithm at each temperature. The data is plotted against the blank phase mask

data in Fig. 5.1a.

The plot shows that below about 77°C, lens optimized squeezing is comparable

to the squeezing generated with a blank mask. However, above 77°C squeezing is

improved with the lens optimization mask. Fig. 5.1b shows the difference in squeez-

ing between the two masks. The inverse focal length corrections are plotted against

temperature in Fig. 5.2. Since the lens optimization mask is shifting the focal point in

the cell, this suggests that squeezing is dependent on temperature and cell position.

That being said, we repeated the measurements at a position 2.3 cm closer to the

SLM. A preliminary plot is shown in Fig. 5.3, but more data is needed. With the

current data, it seems that the lens optimization mask results in better squeezing

than the blank mask for all but the optimal temperature, where the two masks have

essentially equivalent squeezing.

We have also tried lens masks with inverse focal length parameters set by us and

not an algorithm. Initial research suggests that squeezing is better when the in-

verse focal length spherical component is ≈ 0. Because of the initial conditions, our

lens optimization algorithm was not converging at the best squeezing at the new cell

20



(a) Squeezing versus temperature with different masks on the
SLM. The solid blue line represents the amount of squeezing with
a blank mask. The dotted orange line represents the amount of
squeezing with the lens optimization mask.

(b) The improvement in squeezing between blank and lens op-
timized masks. The lens optimized mask yields the most im-
provement at high temperatures

Figure 5.1

21



Figure 5.2: Lens correction (in units of inverse focal length) versus temperature as
generated by the lens optimization algorithm. The blue circles represent the spherical
correction. The red asterisks represent the cylindrical correction. The black dashed
line references ‘zero correction’.

position. We have since changed the initial conditions to reflect this new knowledge.

5.2 Power Considerations

5.2.1 Shot Noise Calibration

There is one major flaw with our optimization algorithms. When an algorithm is

running the shot noise changes each time the the phase mask is updated. We attempt

to account for this (based on the magnitude mask) in the algorithm but the program

has still proved to be faulty. At times, estimated shot noise was off by upwards of 2

dB. The result is an ineffective algorithm because it tries to optimize false data.

The best way to mitigate this problem is to measure the shot noise directly and

feed this back into the algorithm. This presents a problem though. In order to
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Figure 5.3: Squeezing versus temperature with different masks on the SLM and the
87Rb cell 2.3 cm closer to the SLM. The solid blue line represents the amount of squeez-
ing with a blank mask. The dotted orange line represents the amount of squeezing
with the lens optimization mask.

measure shot noise, we must move the PBS into the beam path (see Fig. 3.2). That

being said, someone or something would need to move the PBS in and out of the beam

path every time the algorithm updates in order to recalibrate shot noise, as described

in Section 3.2. This is fairly infeasible because an algorithm might run for several

hours. There is, however, another way around this problem–we can add another

photodetector to the setup. Using a straightforward conversion, this photodetector

would be able to measure shot noise and feed it back into the algorithm without

interrupting the beam path.

We installed a photodiode behind one of the homodyne mirrors that is partially

transmissive. Since a photodiode cannot directly measure shot noise, we have to

convert from the photodiode output voltage to shot noise. The theoretical conversion

23



is

Shot Noise = A+ 10 log10(V − Vbg) (5.1)

where A is the vertical offset, V is the voltage from the photodiode, and Vbg is the

experimentally measured background voltage from the photodiode. When fitting

our calibration data set, we made A and Vbg free parameters. In theory, the scale

factor should be 10, which comes from the definition of a logarithmic scale. However,

because every spectrum analyzer (which converts from linear to logarithmic) has some

error, the actual scale factor is not always 10. Because of this, we also made the scale

factor a free parameter. This resulted in a better fit for our specific data and thus a

more accurate shot noise estimation for our optimization algorithms. Our conversion

function is

Shot Noise = −68.21 + 10.65 log10(V + 0.01573) (5.2)

5.2.2 Power Reserve

Squeezing is power dependent. Specifically, the amount of squeezing is partially

governed by the parameter g

s =
1√
3

(g/α)
1
3 (5.3)

where g is specific to the atomic medium and depends on the intensity and frequency

of the incident beam [1].

In an effort to boost power, we added a BoosTa solid state optical amplifier. This

increases the amount of power we can send to the 87Rb atoms. Although we have

much more available power now, we are not able to access all of it because of our fiber

optic cables are not rated for high power. We will upgrade the fibers in the future.

Ideally, we want to send the same amount of power with each mask. This is not

as easy as sending consistent power to the SLM. Because of the way we modulate

the amplitude of phase masks, we are losing power to higher order diffraction. Thus,
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every phase mask has a different overall power. With the BoosTa we are able to

maintain higher power levels for blank phase masks and then add more power to

phase masks that are inherently lower intensity. We do this via a power adjustment

function.

5.3 Broadband Squeezing

Observed squeezing is frequency specific. A squeezed state can appear to have

different noise reductions at different frequencies. In local frequency ranges, squeezing

is uniform but appears to fluctuate when observed in the lab. These fluctuations stem

from multiple sources. One source is electronic noise, which will appear as narrow

peaks at specific frequencies. These are easily eliminated by removing the device

emitting noise at that frequency. Another source of observed fluctuations is from the

actual laser source. These appear as broad peaks and cannot be eliminated. The

final source of fluctuations is the detection equipment (photodiodes and spectrum

analyzer). At certain frequencies (generally higher frequencies) these devices begin to

fail and report false squeezing levels. With a Gaussian beam (no phase mask applied)

we observe optimal squeezing near 1.0 MHz. At this frequency, the additional noises

discussed above are minimized and we observe the most accurate squeezed noise levels.

An example spectrum analyzer trace is shown in Fig. 5.4. It is important to note that

this is the frequency of the noise, not the local oscillator or squeezed vacuum (both

of which are 377 THz).

5.3.1 Frequency Comparison

We compared squeezing at 1 MHz and 1.2 MHz with a blank phase mask and with

a lens optimized mask, as shown in Fig. 5.5. Fig. 5.5a is a plot of squeezing versus

temperature for blank and lens optimized masks at the two frequencies. Fig. 5.5b
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Figure 5.4: Spectrum analyzer trace. The black line is shot noise and the red line is
squeezed noise. The maximum squeezing (the difference between the two traces) is
at 1.0 MHz.

shows the difference between the lens optimized squeezing and blank squeezing. For

all temperatures, squeezing with a blank mask is better at 1 MHz than it is at 1.2

MHz. At certain temperatures, the lens optimized squeezing at 1.2 MHz is comparable

or better than than the corresponding squeezing at 1 MHz. The lens optimization

has consistently yielded better improvement over blank squeezing at 1.2 MHz.

5.4 Ring Optimization

Our medium complexity optimization is ring optimization. This algorithm adds

concentric rings on top of the lens phase mask from the lens optimization algorithm.

The algorithm searches for optimal squeezing by ‘flipping’ the amplitude and phase

of each ring. If the flip yields improved squeezing then the algorithm follows that

path. If squeezing decreases, the algorithm tries flipping a different cluster. When no

flip improves squeezing, it increases the number of rings and repeats the process until
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(a) Squeezing vs. Temperature at 1 MHz and 1.2 MHz

(b) The improvement in squeezing between the lens optimized
squeezing and blank squeezing for 1 MHz and 1.2 MHz.

Figure 5.5
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it reaches the maximum number of rings. An example set of ring masks are shown in

Fig. 5.6.

We are interested in ring optimized squeezing compared to blank squeezing,

specifically across a wide range of frequencies. We know that observed squeezing

changes as detection frequency changes, so we look at a frequency span of 800 kHz

to 1.5 MHz. This allows us to identify any change in optimal squeezing frequency as

we change cell position and run the ring optimization algorithm. At a cell position of

8.7 cm (in front of the beam focal position) and a detection frequency of 1 MHz (near

the optimal squeezed frequency), we observe 1.8 ± 0.1 dB of squeezing with a blank

mask and 2.0 ± 0.1 dB of squeezing with a ring optimized mask. While a 0.2 dB

improvement in squeezing is not incredible, it does prove that our ring optimization

algorithm is better than a simple blank mask.

5.5 Cluster Optimization

Our most complex spatial optimization is cluster optimization. This algorithm takes

the ring optimization phase mask and breaks the rings into clusters, resulting in a

dartboard pattern. Just like the ring optimization, this algorithm searches for optimal

squeezing by ‘flipping’ the amplitude and phase of each cluster. If the flip yields

improved squeezing then the algorithm follows that path. If squeezing decreases,

the algorithm tries flipping a different cluster. It converges when no flip improves

squeezing. Unlike the ring optimization, it does not add more clusters after the

first optimization. An example set of cluster mask are shown in Fig. 5.7. Initial

experimentation shows that the cluster mask algorithm is able to improve squeezing

compared to a blank mask at some temperatures. However, cluster mask optimization

proved to be too time consuming to be practical because of the large parameter space.
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(a) Magnitude mask

(b) Phase mask

(c) SLM phase mask

Figure 5.6: Sample ring mask. The magnitude mask, (a), and phase mask, (b), are
combined to create the phase mask sent to the SLM, (c). Each mask is a 512x512
array that corresponds to the 512x512 pixel display of the SLM. The z-axis is color,
which represents the ‘depth’ of each pixel.
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(a) Magnitude mask

(b) Phase mask

(c) SLM phase mask

Figure 5.7: Sample cluster mask. The magnitude mask, (a), and phase mask, (b),
are combined to create the phase mask sent to the SLM, (c). Each mask is a 512x512
array that corresponds to the 512x512 pixel display of the SLM. The z-axis is color,
which represents the ‘depth’ of each pixel.
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Chapter 6

Conclusion and Outlook

6.1 Results

To date, we have achieved squeezing of 2.3 ± 0.1 dB below shot noise. We have

determined that for one 87Rb cell position, the optimal temperature of the 87Rb

vapor is in the range of 69-70°C. However, the optimal temperature and amount of

squeezing changes if the position of the 87Rb cell is changed. We have demonstrated

that squeezing via PSR can be optimized by manipulating the spatial profile of the

pump field. A lens optimization algorithm has shown improved squeezing at certain

temperatures. Under certain conditions, this algorithm has yielded over 1.0 dB of

squeezing improvement over a blank mask (see Fig. 5.5). A cluster algorithm has

shown promise but has a large parameter space and is not the most feasible approach

to spatial optimization. A ring optimization algorithm offers faster optimization but

has not yet significantly surpassed blank mask squeezing. We have shown that our

method of squeezing and optimization is effective across a range of temperatures and

detection frequencies.
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6.2 Ongoing and Future Work

We continue to collect squeezing versus detection frequencies data at different 87Rb

cell positions. We are also exploring different power levels in order to improve squeez-

ing with spatially optimized masks that lack substantial intensity.

In the future, we plan to experiment with a shorter 87Rb cell. A shorter cell might

yield better squeezing because there would be a more uniform beam profile within

the cell. We also plan to upgrade our fibers so that we are able to access all of the

power the BoosTa can provide.
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