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Abstract

We explore the properties of electromagnetically induced transparency (EIT) and its ap-

plications as a frequency filter in the field of gravitational wave interferometry. Through

modeling and simulation, we determine parameters for atom-light configurations of multi-

state atoms which will theoretically allow for transmission frequencies and intensities of

squeezed light in a range suitable for increasing sensitiviy levels in gravitational wave in-

terferometers. This corresponds to contrasts greater than 50% and linewidths of 100 Hz or

less. We produce EIT experimentally and characterize the distributions by fitting them to

a generalized Lorentzian. The largest contrast observed is 3.9% with a linewidth of 660 Hz.

The smallest linewidth observed is 260 Hz with a contrast of 0.42%.
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Introduction

1.1 Gravitational wave interferometers

A prediction of the general theory of relativity is that moving objects produce waves in

spacetime which propagate in all directions at the speed of light. These gravitational waves

(GWs) contract space in one dimension while expanding space in transverse dimensions,

alternating with each half period. Attempts to confirm the existence of GWs have resulted

in the construction of high precision laser interferometers across the Earth [1]. These inter-

ferometers use mirrors as test masses so that as a GW passes through, one arm will shorten

while the other elongates, causing a measurable phase shift of the light. A diagram of one

of these interferometers is shown in Figure 1.1.

test mass

test mass

test mass

test mass

light storage arm

photodetector

laser

beam

splitter

light storage arm

Figure 1.1: The Laser Interferometer Gravitional Wave Observatory (LIGO) is a Michelson
interferometer with 4 km long Fabry-Perot cavities as arms. LIGO has 2 sites 3000 km apart
in Livingston, Louisiana and Hanford, Washington.
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1.2 Squeezed states and their application to interfer-

ometry

The uncertainty principle places a fundamental limit on how precisely two quadratures, such

as position and momentum, can be known. A generic form of this limit is shown in Equation

1.1, where χ1 and χ2 are the measurable quadratures.

∆χ1∆χ2 ≥ Limit (1.1)

Due to the Heisenberg uncertainty principle, the amplitude and phase of light cannot be

known beyond a quantum limited precision. This uncertainty in a measurement can be

visualized as Figure 1.2, where rather than a distinct point measurement, there is a ”ball” of

uncertainty in the phase-amplitude plane. The area of this ball is governed by the uncertainty

principle, however, there is no law that these uncertainties must be symmetric [1]. For

example, the ball could be squeezed into an ellipse at some angle (as shown in Figure 1.2)

so that, while maintaining the same total area, the uncertainty in amplitude becomes much

larger than the uncertainty in phase. This is analogous to purposefully losing information

of the amplitude (increasing its uncertainty), so that the phase can be known with greater

precision while still satisfying the uncertainty principle. Once this is done the light is said

to be in a squeezed state. Using squeezed light, an interferometer can measure the signal of

interest beyond the quantum limit, thereby increasing sensitivity to GWs [1]. This would

enable observatories such as LIGO to make detections more frequently from a broader range

of astronomical sources. However, LIGOs optical fields are already in a squeezed state due to

radiation pressure noise within the Fabry-Perot cavities [2]. In order to inject a new squeezed

state, the squeeze angle must be matched [1, 2] This necessitates the use of an optical filter

with a linewidth < 100 Hz [1,2].
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Figure 1.2: The left plot shows a symmetric ”ball” of uncertainty. The right plot shows the
uncertainty squeezed.

1.3 Electromagnetically induced transparency as a fre-

quency filter

Electromagnetically Induced Transparency (EIT) is the phenomenon of an opaque material

becoming transparent for certain frequencies of light. This occurs by ”pumping” atoms

into a ”dark” state by applying optical fields which match the frequency difference between

excited states and the hyperfine ground states, creating a superposition of the ground states

which doesn’t interact with the applied fields [3]. This allows a ”probe” to pass through

the medium with high transmission across a slim range of frequencies. An EIT media could

potentially be used as a filter for rotating the angle of an injected squeezed state, while

maintaining low optical losses [2].
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Theory

2.1 The dark state in a 3-state atom

|a>

|b>

E

Figure 2.1: 2 state configuration with a field applied at the transition between the ground
state and excited state.

In order for EIT to be realized, there must be a state for a 3 level atom in which absorption

and spontaneous emission do not occur. To prove that this is possible, one must show that

the population of the excited state can be zero. For simplicity, we will begin with a simplified

2 level structure, then expand the solution to 3 levels. Consider the wave function of the

configuration shown in Figure 2.1. This is a 2 level atomic structure, with ground state |b〉,

excited state |a〉, and a field E applied at the transition frequency.

Ψ(t) = Ca(t)e
−iωat |a〉+ Cb(t)e

−iωbt |b〉 (2.1)

Here Ca and Cb are the state coefficients, where |Ci|2 is the probability of finding an atom in

state |i〉, and ωi is the frequency of energy level i. We will look for a condition which forces

the time derivative of Ca to be zero by taking the Hamiltonian.
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ih̄
∂Ψ(t)

∂t
= ĤΨ(t) =

(
Ĥ0 + Ĥ ′

)
Ψ(t) (2.2)

Ĥ0 |Ψ(t)〉 = (h̄ωa |a〉 〈a|+ h̄ωb |b〉 〈b|) |Ψ(t)〉 (2.3)

Ĥ ′ |Ψ(t)〉 =
(
h̄Ωe−iωt |a〉 〈b|+ h̄Ωeiωt |b〉 〈a|

)
|Ψ(t)〉 (2.4)

The Hamiltonian consists of two parts, the unperturbed Hamiltonian, Ĥ0, and the inter-

action Hamiltonian, Ĥ ′. Ω is called the Rabi frequency, and is defined as:

Ω =
dabε

h̄
(2.5)

where dab is the dipole moment between states |a〉 and |b〉 and ε is the field amplitude of E.

Now, by plugging Equations 2.1, 2.3, and 2.4 into Equation 2.2, we can solve for the time

derivatives of the coefficients as below:

iĊa = ΩCbe
−i(ω−ωab)t (2.6)

iĊb = ΩCae
−i(ω−ωab)t (2.7)

where ωab = ωa − ωb, and ω is the frequency of the applied field. Now we can expand

these solutions to a 3 level system. The corresponding wave function and solutions are shown

in Equations 2.8 through 2.11.

Ψ(t) = Ca(t)e
−iωat |a〉+ Cb(t)e

−iωbt |b〉+ Cce
−iωct |c〉 (2.8)

iĊa = Ω1Cbe
−i(ω1−ωab)t + Ω2Cce

−i(ω2−ωac)t (2.9)

iĊb = Ω1Cae
−i(ω1−ωab)t (2.10)

iĊc = Ω2Cae
−i(ω2−ωac)t (2.11)
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|a>

E1

|b>

|c>

E2

Figure 2.2: 3 state configuration with 2 fields applied at the transition between the ground
states and excited state.

Setting Equation 2.9 to zero, we arrive at the condition of Ω1Cb = −Ω2Cc in the case of

a 2 photon resonance.

ωbc = ω2 − ω1 (2.12)

This is called such because the frequency difference of fields E1 and E2 is equal to the

difference in transitions from the two ground states. Now by applying the conditions of

Ċa = 0 to Equation 2.8, we arrive at a wave function which is a superposition of only the

two ground states, the dark state.

|D〉 =
Ω2e

−iωbt |b〉 − Ω1e
−iωct |c〉√

Ω2
1 + Ω2

2

(2.13)

2.2 The lambda model

The Λ model is a simplistic atomic configuration consisting of 3 states in total, 2 ground

states and 1 excited state. A representation of the model and the optical fields that are

applied is shown in Figure 2.3. Ωd is the drive field, Ωp is the probe field, ∆ is the 1-photon

detuning, δ is the 2-photon detuning, γ is the decay rate from the excited state, |a〉, to the
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hyperfine ground states, |b〉 and |c〉, and γbc is the decay rate between ground states. The

population and coherence of each state is given by the derivatives of the 3×3 density matrix

with respect to time. These are reproduced below in equations 2.14 to 2.19 [4]:

ρ̇aa = −iΩ∗pρab + iΩpρba − iΩ∗dρac + iΩdρca − 2γρaa (2.14)

ρ̇bb = iΩ∗pρab − iΩpρba + γρaa − γbcρbb + γbcρcc (2.15)

ρ̇cc = iΩ∗dρac − iΩdρca + γρaa − γbcρcc + γbcρbb (2.16)

ρ̇ab = −Γabρab + iΩp(ρbb − ρaa) + iΩdρcb (2.17)

ρ̇ca = −Γcaρca + iΩ∗d(ρaa − ρcc)− iΩ∗pρcb (2.18)

ρ̇cb = −Γcbρcb − iΩpρca + iΩ∗dρab (2.19)

where the coherence decay rate Γij is given by [4]

Γab = γ + i(∆ + δ) (2.20)

Γca = γ − i∆ (2.21)

Γcb = γbc + iδ (2.22)

Because the density matrix is Hermitian, the remaining off diagonal elements can be found

as:

ρ̇ij = ρ̇∗ji, i 6= j (2.23)

By tuning the drive and probe fields to match the |a〉 → |c〉 and |a〉 → |b〉 transitions,

respectively, a coherent dark state is produced. This state deteriorates as the fields are

detuned from these transitions, giving the EIT an inherent linewidth [3].
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Figure 2.3: Λ configuration [4]
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Simulation

3.1 Simulation methods and parameters

In order to solve for the population of each state, we used numerical integration software

called eXtensible Multi-Dimensional Simulator (XMDS). This allowed for integrating Equa-

tions 2.14 through 2.19 across time while varying the detuning to see how the dark state

changed with respect to the probe frequency and propagation through a medium. Attaining

high resolution in detuning and propagation quickly increases the memory requirements of

the simulation, so it was necessary to utilize William and Mary’s high performance comput-

ing cluster, SciClone.

Simulations were run with the following parameters:

• Drive Rabi frequency (Ωd): varied from 16.6 to 25.0 KHz

• Probe Rabi frequency (Ωp): 0.1 Hz

• Excited state decay (γ): 6 MHz

• Ground state decay (γbc): 1 Hz

• Length of medium: varied from 0 to 2 cm

• Particle density of medium: 1× 1015 particles per m3

Equation 3.1 is used to account for propagation in our simulations [4], with k = 2π/λ,

λ = 794.7nm, and N as the number of interacting atoms.

∂ε

∂z
+

1

c

∂ε

∂t
= 2πikN

∑
i,j

di,j ρ̃i,j (3.1)
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3.2 Simulation results and analysis

The result of any EIT from specific parameters is measured in two respects, the contrast and

the linewidth. Using Figure 3.1 as a reference, the contrast is defined to be the difference

between the peak and shoulder transmissions divided by the peak transmission. In this way

it is normalized to a maximum of 100%. The linewidth is taken as the full width at half

maximum (FWHM).

2 photon detuning (MHz) ×10-4
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1
Transmission vs 2 photon detuning

Figure 3.1: An example EIT transmission distribution.

Because the EIT does not start with precisely 100% transmission, a small percentage

of the probe intensity is lost to atoms while propagating. The effects of initial drive power

and propagation on transmission are shown in Figure 3.3. When the probe is detuned

from the resonant frequency, however, transmission drops considerably more, resulting in

the development of contrast (Figure 3.2). From Figure 3.4 one can see that contrast does

12



3

×10-4

2

2 photon detuning (MHz)

Transmission vs propagation vs 2 photon detuning

1
0

-1
-2

-30.02

0.015

0.01

Z (m)

0.005

0

0.5

1

0

T
ra

n
s
m

is
s
io

n

Figure 3.2: The evolution of EIT as it propagates through an atomic medium in the Z
direction. With increasing atom interactions, the field is absorbed for frequencies far from
resonance, while frequencies near resonance are free to pass.

indeed increase with propagation. This also results in a narrowing of the linewidth with

propagation, as shown in Figure 3.5. Using Figure 3.6 we can see that the requirement of a

linewidth < 100 Hz can be achieved with contrast > 50% across drives ranging from 17 kHz

to at least 25 kHz for nearly any medium length greater than 1 cm. This is the range that

is useful for applications of EIT as a frequency filter in gravitational wave interferometers.
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Transmission (%) vs drive vs z
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Figure 3.3: This map shows how the transmission of the EIT is affected by the Drive fre-
quency and length (Z) of the atomic media through which the fields are propagating.
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Contrast (%) vs drive vs z
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Figure 3.4: This map shows how the contrast of the EIT is affected by the Drive frequency
and length (Z) of the atomic media through which the fields are propagating.
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Width (Hz) vs drive vs z
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Figure 3.5: This map shows how the linewidth of the EIT is affected by the Drive frequency
and length (Z) of the atomic media through which the fields are propagating.
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Transmission (%) for contrast > 50% and linewidth < 100 Hz

Z (m)

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

D
ri
v
e

 (
M

H
z
)

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025 80

82

84

86

88

90

92

94

96

98

100

Figure 3.6: This map shows transmission for the regions of drive and z where contrast is >
50% and linewidth < 100 Hz.
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Experiment

4.1 Experimental setup and procedures

4.1.1 Setup

Figure 4.1: A diagram of the experiment configuration.

Figure 4.1 shows a schematic of our experimental setup. We begin with a semiconductor

laser tuned to the 5S 1
2
, F = 2 −→ 5P 1

2
, F = 1 transition frequency of 87Rb using the

reference cell. This is then attenuated before being passed to an electro-optic modulator

(EOM). The EOM is provided a frequency of 6.834 GHz, corresponding with the hyperfine

splitting of 87Rb, which is swept through a ramp of 4.768 kHz over a time of 101 ms. This

creates a side band with the main beam, to act as our probe and drive fields, respectively.

These two fields then pass through a magnetically shielded cell of 87Rb before reaching a

photodiode. The cell is roughly 1.5 cm in diameter and 1 cm in length. It has a high

temperature anti-relaxation coating intended to extend the lifetime of the dark state, and so
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allow for narrower linewidths. It is temperature controlled using a thermocouple and heating

element within the shield, connected to an external temperature controller.

4.1.2 Procedures for varying beam intensity

Measurements with varying intensity are done by changing the attenuation of the beam be-

fore the cell through the addition of neutral density filters. The resulting power is measured.

This measurement is what is used for most of our plots, however this can be converted to a

Rabi frequency as reproduced in Equation 4.1 [4].

Ω = 2πγ

√
I

8
(4.1)

Here intensity, I, is measured in mW
cm2 . For 87Rb, γ is 6 MHz. The power measured is a roughly

equal combination of the drive field and two probes (the EOM produces two sidebands at

± the modulation frequency). This estimates our drive and probe Rabi frequencies to be in

the range of 5 to 30 MHz. This is much larger than the regime which simulations cover, as

with our current setup it would not be feasible to detect such small fields.

4.1.3 Procedures for varying cell density

Rather than increasing atom-light interactions through lengthening the cell as we did in sim-

ulations, experimentally it is easier to increase the density of atoms in the cell. This is done

by increasing the temperature. When taking any measurements with varying temperature,

we set temperature first, then iterate through any secondary variables such as power. This

is due to the prolonged amount of time required for the temperature to become stable at a

new point. We have taken measurements for temperatures ranging from 60 to 75 degrees

Celsius in increments of 5 degrees. This corresponds to a range in particle concentration of

about 1×1011 to 9×1011 (particles
cm3 ) [5].
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4.1.4 Procedures for varying beam waist

Although it was not addressed in our simulations, studies with anti-relaxation coated cells

have shown that a smaller beam waist results in a finer linewidth of the EIT resonance [6].

In order to incorporate this variable into our study, an iris was placed in front of the Rb

cell as shown in Figure 4.1. Rather than attempting sub-millimeter measurements of the

beam waist, we quantify the waist size by the percentage of power passed through the iris.

These measurements are then converted to a fraction of our beams ω0, the radius at which

intensity has dropped by a factor of e2. We have taken data for 3 beam waist values: 3ω0,

1.2ω0, and 0.8ω0, corresponding to roughly 100, 50, and 25 percent of the full beam power,

respectively.

4.2 Experimental data and data analysis

4.2.1 Processing of raw data

As with simulations, we look to measure linewidth and contrast of EIT. In simulation with

well shaped absorptive Lorentzian distributions, these were easy to determine with simple

analysis. Experimentally, however, the distributions have a dispersive Lorentzian compo-

nent which makes them asymmetrical. In order to accurately determine the linewidth and

contrast, we fit these distributions to a generalized Lorenztian as given in Equation 4.2.

Transmission = A
γ2

γ2 + δ2
+B

γδ

γ2 + δ2
+ C (4.2)

Here the term with coefficient A is the absorptive Lorentzian and the B term is the dispersive

Lorentzian. Parameters A, γ, and δ are the contrast, half width half maximum (HWHM),

and 2 photon detuning, respectively [7]. An example of this curve fitted to experimental

data is shown in Figure 4.2.

20



2 photon detuning (Hz)

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

T
ra

n
s
m

is
s
io

n

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Transmission vs 2 photon detuning

Contrast = 3.90 ± 0.019%

Linewidth = 657 ± 5 Hz

Figure 4.2: Fit of experimental EIT with a contrast of 3.9% and linewidth of 5 Hz. Error
bars represent a 95% confidence interval.
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4.2.2 Contrast and linewidth vs power for varying particle con-

centration

The data collected as described in Section 4.1.3 is shown in Figures 4.3 and 4.4. These

show the contrasts and linewidths, respectively, as functions of drive field power for various

rubidium concentrations. We see that contrast increases with drive power before plateauing,

as well as a pattern of contrast increasing with density. Both of these results were also

observed in simulations (Figure 3.4). Linewidth clearly increases with power, though our

smallest linewidth was observed at 260 Hz with a contrast of 0.42%. This experimental

trend is expected from the simulation results in Figure 3.5. Unlike our simulation results,

however, here linewidth increases with concentration. This is likely due to the ground state

decay rate, γbc, truly being a function of concentration (n) and not a constant as it was

in simulation. It is clear that we see significantly broader linewidths and smaller contrasts

experimentally than in simulation. This is not surprising given that we are operating in a

different regime of drive and (especially) probe Rabi frequency.

4.2.3 Contrast and linewidth vs intensity for varying beam waist

Figures 4.5 and 4.6 show the data collected as detailed in Section 4.1.4. The x-axis of the

plots was converted to a percentage of full intensity from the power measurements in order

to show a better comparison of changes in waist size (which have comparable intensities,

but different total power). As before, we see that contrast increases with power, both from

changes in intensity and changes in waist size. The important observation here is in Figure

4.6, where it is evident that a smaller waist size results in a finer linewidth. The linewidths

observed here are roughly a factor of two larger than those seen in Figure 4.4. This is due

to error discused further in Section 4.3. This data contains the largest contrast observed of

3.9% with a linewidth of 660 Hz.
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Figure 4.3: Contrast vs power for varying particle concentration
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Figure 4.5: Contrast vs intensity for varying beam waist

25



Intensity (%)

0 20 40 60 80 100 120

W
id

th
 (

H
z
)

400

500

600

700

800

900

1000
Width vs intensity

Waist = 3.0ω
0

Waist = 1.2ω
0

Waist = 0.8ω
0

Figure 4.6: Width vs power for varying beam waist
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4.3 Error analysis

We have encountered multiple noise and error sources which have impacted data collection.

These have ranged from benign technical problems involving our heating element, to possibly

data altering errors due to faults in electronics. We have identified one of these sources as the

magnetic field generated by current between our temperature controller and thermocouple.

This has had an affect of widening the resonance linewidths discussed in Section 4.2. We

have also observed excessive noise in the data, though the source is not yet known.
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Conclusions

We have simulated EIT in 3 state atoms with properties based on those of 87Rb. The drive

Rabi frequency ranged from 16.6 to 25 kHz with a fixed probe Rabi frequency of 0.1 Hz. EIT

with contrasts above 50% and linewidths of less than 100 Hz, suitable for use as a frequency

filter, were found in this regime for media lengths of up to 2 cm. We have demonstrated

EIT experimentally, though due to technical limitations both our drive and probe Rabi

frequencies are several orders of magnitude higher than simulation parameters, ranging from

approximately 5 to 30 MHz. Contrast and linewidth are determined by fitting the data to a

generalized Lorentzian. The smallest linewidth observed is 260 Hz, with a contrast of 0.42%.

The largest contrast observed is 3.9% with a linewidth of 660 Hz.
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