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1. INTRODUCTION

A laser locked to a narrow resonance of a high-finesse
resonator is a common source of stable narrow-linewidth
optical signals.® The frequency stability of the resonator
mode, generally limited by mechanical”® as well as tem-
perature fluctuations,’ determines the laser stability.
Whispering-gallery-mode (WGM) resonators, featuring
small size, high transparency windows, and narrow reso-
nances, are natural candidates for use in laser
stabilization.'” These resonators also can be helpful in mi-
crowave photonics, for instance for frequency stabiliza-
tion of optoelectronic11 and coupled optoelectronic
oscillators.'® The possibility of direct generation of high-
stability microwave signals using various nonlinear pro-
cesses enhanced due to the high-quality factors and
small-mode volumes of the resonators'®” should also be
considered. In this paper, we evaluate the thermodynamic
limitations of the frequency stability of WGM resonators.
In a future paper, we will discuss the possibility of stabi-
lization of WGM frequency beyond the thermodynamic
limit found in this paper. Finally, in a third paper of the
series, we will study the performance limitations of vari-
ous frequency references stabilized with WGM resona-
tors.

WGM optical resonators are dielectric structures that
support extremely high-quality (@-) factor modes propa-
gating close to the surface of the resonator. The ultimate
Q@ factors of the modes are determined by the intrinsic
material loss and scattering. The attenuation is mini-
mized for resonators produced with crystalline
materials.'”® Crystalline WGM resonators have ultra-
high-@ factors in a wide wavelength range, and some
crystalline optical materials such as calcium fluoride have
small absorption and scattering in a broad wavelength re-
gion. According to recently reported measurements, ' the
light attenuation coefficient of CaFy is 6 X10°cm™ at
157 nm and even lower in visible and infrared wavelength
ranges, which gives us grounds to believe that the @ fac-
tor of a WGM resonator made out of calcium fluoride will
exceed 10° in the frequency range spanning from 150 to
8000 nm.
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Crystalline WGM resonators have many other attrac-
tive features. They are generally immune to atmospheric
humidity, unlike, e.g., resonators made with fused silica
that have a degraded @ factor in humid air. The
resonator-based devices are extremely compact. There are
several techniques for efficient in and out light coupling
with crystalline resonators. A great advantage of a WGM
resonator is that it is possible to engineer its modal spec-
trum via a modification of the shape of their surface.

The major advantages of WGM resonators compared
with Fabry—Perot (FP) resonators commonly used as fre-
quency references are: (i) the small size of WGM resona-
tors ranging from a few hundred micrometers to a few
millimeters; (ii) a large wavelength range where WGM
resonators have high @ factors; and (iii) the low sensitiv-
ity of WGM resonators to mechanical noise because of the
unique orthogonality relations between optical and acous-
tical WGM modes (triply resonant scattering “photon «
photon and phonon” is generally suppressed), and be-
cause of the high-@ factors and the high frequency of the
acoustical modes. All these features make utilization of
the WGM resonators in place of FP resonators attractive
for a broad range of applications.

On the other hand, WGM resonators have several dis-
advantages compared with FP resonators. (i) Reference
FP resonators contain a specific mirror spacer material
that has a low thermal expansion coefficient. WGM reso-
nators cannot contain such a material. The polished rim
surface of the WGM resonator plays the role of the reso-
nator mirrors, and the host material is the only resonator
mirror spacer material possible. Such a material gener-
ally has a large thermal coefficient of expansion. This
problem can be mediated by efficient thermal isolation of
the compact WGM resonators, which is simpler than the
isolation of FP resonators because of the small size and
structure rigidity of the WGM resonators. (ii) Reference
FP resonators are empty, i.e., devoid of any material, and
are comparably large. Those properties reduce the funda-
mental thermodynamic fluctuations, which are important
even if the resonator is kept at a constant temperature.
WGM resonators are small and material filled and hence
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suffer more strongly from the thermodynamic
fluctuations.?® (iii) The optical nonlinearity of WGM reso-
nators is much higher than the nonlinearity of FP resona-
tors because of the same reasons as indicated in the pre-
vious item. The circulating optical power level should be
limited in a WGM resonator to mediate this problem. The
power fluctuations of a laser interrogating the resonator
should also be small.

The goal of the present contribution is elucidating the
properties of WGM frequency fluctuations, resulting from
the basic fundamental thermodynamic as well as quan-
tum optic principles. We evaluate the frequency spectra of
thermorefractive and thermoelastic fluctuations, as well
as the steady-state WGM frequency uncertainty resulting
from those fluctuations, both numerically and analyti-
cally. We show that both types of thermodynamic fluctua-
tions contribute equally to the steady-state frequency un-
certainty. On the other hand, the spectral power density
of the frequency noise is given primarily by the thermore-
fractive fluctuations. We also study the photothermal and
ponderomotive fluctuations originating from the measure-
ment procedure and find their frequency spectra.

We show that the stability of WGM frequency is prima-
rily determined by the thermorefractive fluctuations. For
instance, the fluctuations result in a one-second-averaged
Allan deviation of 10712 in the WGM frequency of a cal-
cium fluoride resonator with a 0.3cm radius and a
0.01 cm thickness. The deviations originating from other
fluctuations are at least 2 orders of magnitude smaller.

This paper is organized as follows. The fundamental
thermodynamic fluctuations of a WGM resonator are
studied in Section 2. The fluctuations originating from the
measurement procedure are studied in Section 3. Section
4 concludes the paper. All extensive calculations can be
found in Appendices A-F.

2. FUNDAMENTAL THERMODYNAMIC
FLUCTUATION OF A
WHISPERING-GALLERY MODE

In this section, we consider two types of resonators. We
initially assume that a WGM resonator can be considered
as a small part of a much larger object, so the thermal
spectrum is continuous. This assumption is valid, for in-
stance, for a low contrast resonator?! or for a resonator
being in good contact with the heat bath. The validity of
the assumption is even more general. It was shown in
Ref. 20 that it is possible to neglect the discreteness of the
spectrum of the thermal waves in a sufficiently large
spherical resonator (radius exceeding several tens of mi-
crometers) because the mode volume is small compared
with the volume of the resonator. To confirm that conclu-
sion, we also consider a thin resonator, so the discrete
thermal spectrum should be studied. We show that the
resonators with both discrete and continuous thermal
spectra possess equivalent frequency fluctuations.

As a general rule, the relative uncertainty of the eigen-
frequency of WGMs of a thin cylindrical (toroidal) resona-
tor can be found from the expression
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where w is the mean value of the frequency of a selected
mode, Sw is the fluctuation of the frequency, R and AR are
the values of the radius of the resonator and its fluctua-
tion, and n and An are the values of the index of refrac-
tion of the material of the resonator and its fluctuation.
Equation (1) is valid for a WGM resonator of any relevant
shape if the radius of the resonator determines the larg-
est dimension of the geometrical localization of the mode,
i.e., where wwgy=cv/(Rn), where v>>1 is the azimuthal
mode number.

Generally, the terms AR/R and An/n in Eq. (1) are re-
sponsible for thermoelastic and thermorefractive noise,
respectively; however a correlation between them is pos-
sible. Both terms are of the same order, and they both
should be taken into account in crystalline WGM resona-
tors.

A. Thermorefractive Fluctuations: Steady State
Thermodynamic fluctuation of temperature in the WGM
volume results in fluctuations of the index of refraction in
the WGM channel,

An
— = a,(AT),,, (2)

" 1,

where «,=(1/n)(dn/JT) is the thermorefractive coefficient
of the resonator host material, and (AT),, is the fluctua-
tion of the temperature averaged over the mode volume
relative to the averaged temperature of the whole system.
The mean-square value of the thermal fluctuation is®?

kpT?

CpVup’

(AD)) = (3

where kp is Boltzmann’s constant, 7' is the absolute tem-
perature, p is the density of the resonator host material,
V. is the mode volume (assumed to be much less than the
volume of the resonator), and C, is the specific heat ca-
pacity at constant pressure of the resonator host material.
In what follows, we assume that C,,=Cy=C for a crystal-
line material. The mode volume of a WGM belonging to
the basic mode sequence of a spherical resonator is®>

A 7/6
Vm=3.4173’2<—2 ) RS, (4)

™

The value of the mode volume of a toroidal and/or cylin-
drical WGM resonator varies, depending on the resonator
thickness; it can exceed the value for the spherical reso-
nator.

B. Thermorefractive Fluctuations: Spectrum
The frequency spectrum of thermorefractive fluctuations
can be found following the path described in Ref. 20. The
complex temperature distribution z in the resonator is
given by the heat transport equation containing a distrib-
uted external fluctuational thermal source,24
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du
— —-DAu=F(r,t), 5
o u=F(r,t) (5)

where D=«k/(pC), k is the thermal conductivity coefficient,
and C is the specific heat capacity. The thermal source is
normalized such that the quadratic deviation of the mode
temperature coincides with expression (3) [see, e.g., Eq.
(B20) as well as a discussion in Appendices A and B].

We are interested in the temperature fluctuations av-
eraged over the mode volume,

ﬁ(t):fu(r,t)|\1’(r)|2dr, (6)

where |¥(r)|? is the normalized spatial power distribution
for the light localized in a WGM, [|¥(r)|?dr=1.

The spectral power density of the random process #(t)
and the quadratic deviation of the average mode tempera-
ture (1(0)%) are given by

Sa(Q) = f (@ (t)a(t + n)e *dr, (7)
“ dQ

(AT)2) = (u(0)* = f Sal @) (8)
-00 7T

Let us consider a resonator formed on the surface of an
infinitely long cylinder of radius R by a cylindrical protru-
sion of radius R+AR (R>>AR) and thickness L. We solve
Eq. (5) and numerically evaluate the spectral density of
frequency fluctuations for a calcium fluoride resonator
with R=0.3 cm and L=0.01 cm [see Appendix A and Fig.
1].

We also find the fluctuations for a thin cylindrical reso-
nator of thickness L and radius R, R>>L. A simple ana-
lytical approximation is possible in this case. We present
the correlation of the fluctuation forces as

kgT?DL
(F(r,t)F(r',t')) =167m———8(xr -¢')8(t -¢t'); (9)
pCV,,
solving Eq. (5), we derive an approximate expression for

the spectral density of the thermorefractive noise (see Ap-
pendix B):
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Fig. 1. (Color online) Spectral power density of the frequency
noise S 5,/,(Q) = 2S;(Q) resulting from the thermorefractive fluc-
tuations in a low-contrast WGM resonator.
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Fig. 2. (Color online) Spectral density of the frequency noise
S 5u(Q) = a2S5(Q). The solid (black) curve is derived from the ex-
act solution given by Eq. (B19), found by the summation of con-
tributions of modes with m =0 (dashed blue curve) and m =2 (dot-
ted green curve).
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A comparison of this approximate solution with an exact
solution for a particular example is given in Appendix B.
The spectral density of the frequency noise, given by
S swo(Q)= a,%SZ;(Q), is approximately the same for the case
of a thin resonator and for a resonator being a part of an
infinite cylinder [compare Figs. 1 and 2].

S.(Q) =

C. Thermoelastic Fluctuations: Steady State

Note that the variations of the mode volume of a WGM
due to, e.g., fundamental thermoelastic fluctuations, do
not change the WGM frequency. The frequency is given by
the boundary conditions of the resonator and by the value
of its radius. The fluctuation of the radius, in turn, is de-
termined by the fluctuation of the volume as well as the
temperature of the entire resonator. We show that the
fluctuations of the temperature averaged over the resona-
tor volume are small compared with the temperature fluc-
tuations averaged over the mode volume and, hence, can
be neglected. The thermoelastic fluctuations should be
taken into account.

To use the thermodynamic approach, we assume that
the resonator is a small part of a much larger sample.
This is possible if the resonator is a thin disk cut on a
solid-state rod. Then the volume of the resonator V, fluc-
tuates as??

(AV,)?) Br
V7 - kBT77 (11)

and Br=-[(1/V)(éV/dp)]r is the isothermal compressibil-
ity of the resonator host material. Fluctuation of the ra-
dius of a spherical resonator due to fluctuations of its vol-
ume is
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AR AV,
—| = . (12)
R |, 3V,
Fluctuation of the average resonator temperature,
s BT
A = , 13
(AT);) Vi (13)
influences the radius as well:
" (AT) (14)
- =q AT o 14
R |y

where a;=(1/1)(dl/dT) is the linear thermal expansion co-
efficient.

Using the fact that fluctuations (AV), and (AT), are sta-
tistically independent, and that the correlation of fluctua-
tions of the temperature of the whole resonator and the
average temperature in the WGM localization, (AT), and
(AT),,, respectively, is small (mode volume is much
smaller than the volume of the resonator), we arrive at

((AR)% Br kT
5 kRl + a; .
R 9V, ' C,V,p

(15)

Let us compare the influence of the fundamental ther-
morefractive and thermoelastic fluctuations on the WGM
frequency. Because |¢| and |a,| are usually comparable
for crystalline materials and V,>>V,,, the second term on
the right-hand side of Eq. (15) is much smaller as com-
pared with the thermorefractive term given by Eq. (2).
The first term on the right-hand side of Eq. (15) is signifi-
cant. This should also be compared with the squared Eq.
(2). For instance, for a cylindrical fluorite resonator with
R=0.3cm and L=0.01 cm at room temperature, the ther-
moelastic term is two times smaller than the thermore-
fractive term. Therefore, both the thermoelastic and ther-
morefractive terms should be taken into account to find
the frequency uncertainty of a WGM.

It is important to note that the thermoelastic noise de-
pends on the shape of the resonator. For instance, the
thermoelastic fluctuations of a thin cylindrical resonator
mounted on a thin stem should be considered in a differ-
ent way compared with the above derivation. The above
estimate is valid only if there is at least one continuous
(quasi-continuous) dimension in the system, for instance,
if the resonator is formed by a small protrusion on a long
cylindric rod. We also show in Appendix D that thermal
radial oscillations of a liquidlike sphere result in a ther-
moelastic fluctuational term similar to the one in Eq. (15).

Finally, we should mention that usually only tempera-
ture fluctuations transformed into volume fluctuations
through thermal expansion [Eq. (14)] are called ther-
moelastic. The thermodynamic fluctuations of volume
[Eq. (12)] are called Brownian.

D. Thermoelastic Fluctuations: Spectrum

We have shown in the previous section that thermoelastic
fluctuations should be taken into account to determine
the frequency stability of a small crystalline resonator.
Let us find the spectral density of the frequency noise de-
termined by the fluctuations. For the sake of simplicity,
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we consider only one effective 1D elastic mode of the reso-
nator of the lowest order. The contributions from other
modes of higher order are comparably small. We assume
that in the vicinity of the WGM localization, the radius of
the resonator changes in accordance with

J(AR)
at

+(=iQo+'0)AR =Fp(t), (16)

where the oscillation frequency is taken to be equal to the
eigenfrequency of the lowest-order radial mode of a
spherical resonator of radius R,

a7

where v, is the speed of sound. We do not consider the
other types of mechanical oscillations of the resonator.

The decay rate of the acoustic mode can be very small.
The minimal value of the rate is thermodynamically
limited?>:

QZxTalp

r
0 9C?

v

(18)

This is a very small value. The realistic value of the qual-
ity factor (Qq/21g) of the acoustic mode is expected to ex-
ceed 5% 10* (Ref. 9).

We select the fluctuational force Fr(¢) such that it obeys

BrR*

(Fr(®)Fg(t') =TokgT oV,

ot -t'), (19)

and obtain an expression for the spectral density of the
radius fluctuation:

Br Ly

— 20
IV, (Q-Qy)2+T2 (20)

SAR/R = kBT

The density is peaked at )y and is significantly sup-
pressed at higher frequencies. For example, for a cylindri-
cal resonator with R=0.3cm, L=0.01cm, and v,=5
X 10% em/s, we have Qy=5x 10% rad/s. Assuming that I';
=100 rad/s, we obtain Fig. 3. It is easy to see that the low-
frequency branch of the spectral power density of the fre-
quency noise given by the thermoelastic fluctuations
(S se/0=SaAr/R) is much smaller than the one due to ther-
morefractive fluctuations.
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Fig. 3. (Color online) Spectral density of the frequency noise
S 50/0(2) =S sr/r(Q) due to thermoelastic noise.
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Table 1. Parameters of the Calcium Fluoride,
Sapphire, and Fused Silica

Parameter CaF, Al,O4 Si0,
p, g/cm? 3.18 4.0 2.2
Br, 10712 em?/dyn 1.2 0.4 2.7
C,, 10%erg/(g K) 8.54 7.61 6.7
n at 1.55 um 1.42 1.75(0)/1.74(e) 1.46
a;, 1075 K1 1.89 5.4(0)/6.2(e) 5.5% 1072
a,,10° K1 -0.75 1.0 1.0
k, 10° erg/(cm s K) 9.7 24 1.4

107 AN \
10" \

10" \
CaF, \

13

10°

10™ \\

10° 10® 107 10® 10° 10* 10° 107 10" 10°
3

Relative uncertainty of the frequency, Aw/w,

Volume of the mode, cm

Fig. 4. (Color online) Thermodynamic uncertainty of the abso-
lute frequency of a WGM versus mode volume calculated for a
spherical resonator.

E. Fundamental Frequency Uncertainty

Let us estimate how the relative frequency uncertainty of
a WGM depends on the averaged mode volume. Substitut-
ing the data presented in Table 1 as well as kp=1.38
X 10718 erg/K, T=300 K, into Eqgs. (1), (2), and (15) we ob-
tain Fig. 4. It is easy to see that the frequency uncertainty
almost does not depend on the material the WGM resona-
tor is made from. The reasonable value of the relative fre-
quency uncertainty for existing crystalline WGM
resonators'® is of the order of 10712,

3. FLUCTUATIONS ORIGINATING FROM
THE MEASUREMENT PROCEDURE

In this section, we consider fluctuations of the WGM fre-
quency arising from the measurement procedure. The
resonators are interrogated with laser radiation. Shot
noise of the radiation causes two additional types of fluc-
tuations: photothermal,z‘l’26 optoelastic,27 and self-phase
modulational.

A. Photothermal Fluctuations
These fluctuations appear as the result of the transfer of
the shot noise of light absorbed in the resonator to the
temperature fluctuations of the resonator host material
and to the subsequent fluctuations of the index of refrac-
tion of the resonator.

The temperature distribution in the resonator is de-
scribed by the equation,

Matsko et al.

u
E —DAu = Fp(r,t), (21)

where Fp(r,t) is the fluctuational force describing noise
due to the absorption of the photons in the resonator,

ﬁw,,, m
(Fp(r,t)Fp(r’,t")) = p2—(;’2<Pabs>|W(r)|25(r —r)8t - 1),

(22)

®,,nm is the angular frequency of the corresponding
WGM, (P, is the expectation value for the absorbed
power, and |¥(r)|? is the power distribution in a WGM
(/W (r)Pdr=1).

We find (see Appendix E) that the spectral density of
the temperature fluctuations for a cylindric resonator can
be approximated by

hiw,qm Paps) TRY/64L%?

Su(Q) = .
(@) p?C* V2 0%+ #°D¥16L°R

(23)

A comparison of the exact numerical simulation and the
approximation of the spectral density is presented in Fig.
5. It is easy to see that the photothermal fluctuations are
small for reasonable values of the absorbed optical power.

B. Ponderomotive Fluctuations

Ponderomotive fluctuations occur as a result of the fluc-
tuations of the radiation pressure induced by light propa-
gating inside the resonator.??8 The integral value of the
pressure induced force is F=2wPn/c, where P is the
power of the light inside the resonator. The force changes
the resonator radius as well as the index of refraction.
The index of refraction is involved due to the mechanical
strain of the resonator host material:

ow 1 AR
—=|1+=K, |—, (24)
[0} 2 R

where factor K,=—Es~'9e/dp ranges from 1 to 10, E is
Young’s modulus of the material, and s=n? is the electric
susceptibility of the material.

10"

I
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y<d

-1/2

£ 10?

12
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102

10" 10° 10° 10° 10"
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Fig. 5. (Color online) Spectral density of the photothermal fluc-
tuations of a WGM frequency (S¥2, = «,SY?) calculated for a fluo-
rite resonator with R=0.3 cm and L=0.01 cm interrogated with
coherent 1.55 um light of 1 mW power assuming that the light is
absorbed in the resonator. The solid (dashed) curve stands for the
simulation (analytical calculations).
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Fig. 6. (Color online) Spectral density of the ponderomotive

backaction fluctuations of frequency [S¥2 =(1+K./2)S¥2 ] cal-

culated for a fluorite resonator with R=0.3 cm and L=0.01 cm in-
terrogated with 1 mW coherent light.

For the sake of simplicity, we take into account only one
mechanical mode having the lowest mechanical frequency
(17) and assume that the probe light is resonant with the
corresponding WGM. The last condition is required to
avoid mechanical instability or additional rigidity added
to the mechanical system by light. The mechanical oscil-
lations of the resonator surface are described by the equa-
tion

P(AR) J(AR) 27n 5P (t)

R

where m” = pV, is the effective mass of the oscillator, and
SP(t) is the variation of the optical power in the corre-
sponding WGM. Calculating 6P(¢) using the general
Langevin formalism (see Appendix F) we derive an ex-
pression for the spectral density of the fluctuations:

2mn 2fia),,,q,m(P) " 2vr 1
m’cR 7o Ve + Q% (Q2 - 022+ 1202
(26)

Sarr= (

where yg is the spectral width of the mode. Because gen-
erally Q¢>> yg, I'g we find an expression for the square de-
viation of the radius of the resonator resulting from the
fluctuations of the radiation pressure:

(AR*))2  2mm { ﬁwy,q,m<P>( m) ] vz
. @27

1 1+—
7082 0

R  m'cR

Let us estimate the value for a fluorite resonator with R
=0.3cm and L=0.01cm interrogated with coherent
1.55 um light of 1 mW input power. We also assume that
yr=2mwX10*rad/s and I'j=100rad/s. We find the aver-
aged power inside the resonator (P)=1mW X[2/7yyg]
=340W, square deviation of the radius ((AR2(¢))/R%)Y2
=8x10716, and low-frequency spectral density
(Sarr(0)Y2=4x10"18 Hz 12, The corresponding spectral
density of frequency fluctuations for K,=4 is shown in
Fig. 6.

Our calculations show that the radiation pressure fluc-
tuations are comparably weak in a sufficiently large
WGM resonator and can be neglected in the majority of
cases when the resonator is interrogated with low-power
light.
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C. Self-Phase-Modulational Fluctuations

Fluctuations resulting from Kerr nonlinearity of the reso-
nator host material result in a variation of the refractive
index of the material,

on  nydP(t)
—= , (28)
n An

where ny is the Kerr nonlinearity of the resonator and
A=V, /27R is the cross-section area of the WGM. The
change of the refractive index results in the shift of the
WGM frequencies.

Using the results of the previous section, we obtain the
following expression for the spectral density,

n% f wv,q,m<P> 27R

wlo = , 29
oS T it e 29
and frequency uncertainty,

dw  ng\hw,, (P

— M (30)

w An \J”TO

We estimate the values for a fluorite resonator with R
=0.3cm and L=0.01 cm with yz=27Xx10*rad/s interro-
gated with coherent 1.55 um light of 1 mW input power.
The averaged power inside the resonator is (P)=340W,
the cross-section area is A=3 X 1078 cm? (see Appendix C),
10=27Rn/c, and n=1.45. The nonlinearity of the material
is 19=3.2x10"%cm?/W. Finally, we find Sw/w=5
X 10714, The spectral density of the frequency fluctuations
originating from the effect of self-phase modulation is
shown in Fig. 7.

In practice, the power should be much lower to allow
operation below the stimulated Raman scattering as well
as the four-wave-mixing threshold. Hence, the frequency
uncertainty originating from the optical nonlinearity of
the resonator host material is small enough.

4. SUMMARY AND CONCLUSION

In this paper, we have studied the fundamental noise
sources that affect the frequency stability of WGM reso-
nators and have found spectral power densities of fluctua-

107
N
\\
s N
‘N 107 N
I_!3 \\\
=3 N
” 107 N
N
2 I A O N
N

10° 10° 10° 10° 10"
Frequency, Hz
Fig. 7. (Color online) Spectral density of the frequency noise
S¥2 (Q) resulting from the self-phase-modulation effect in the
CaFy, resonator. The noise is calculated for a fluorite resonator

with R=0.3 cm and L=0.01 cm interrogated with 1 mW coherent
light.
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tions of frequency for such resonators. The fluctuations
are caused by thermorefractivity, thermoelasticity, and
the ponderomotive effect of light. We have shown that the
thermorefractive fluctuations are the major sources con-
tributing to the frequency fluctuations in a WGM resona-
tor interrogated with low-power light.

Nevertheless, our findings indicate that the fluctua-
tions are small enough to make the resonators attractive
as secondary frequency references. It is convenient to use
the Allan variance of the WGM frequency to quantify the
frequency stability. We can find the variance by integrat-
ing the evaluated spectral density of the fluctuations®®

sin*(Q7/2)

(Q7/2) 4o, (31

9 =
02(7-) = _f Sﬁw/m(Q)
™o

where we took into account that S,,,(Q2) is a double-sided
spectral density. We find that the thermorefractive fluc-
tuations [see Eq. (10)] result in o(r=1s)=10"12. The
value can be made even smaller by further averaging and
increasing the integration time. In the second paper of
this series, we will discuss the possibility of suppression
of the fundamental thermodynamic fluctuations dis-
cussed in this paper.

APPENDIX A: SOLUTION OF THE
STOCHASTIC HEAT TRANSFER EQUATION
FOR A LOW-CONTRAST RESONATOR

The complex eigenfunctions of the heat transfer equation
with zero Neumann boundary condition,

du
— -DAu=0, (A1)
at
du
—=0, (A2)
on

for an infinite cylinder with radius R can be presented in
form,

dk,,
Up ik, @) (ky pr)e! Pethm* — Py (A3)

u(t) = E

where J;(k; ,r) is the Bessel function of the first kind, and
k;, are roots of the equation aJ;(k; ,7)/ dr|p=0. Equation
(A1) describes the temperature modes of a WGM resona-
tor near thermal equilibrium. Only modes with [=0
should be taken into account if we are interested in a
study of thermal properties of optical WGMs with field
distribution given by

z 2 Jk,,r) e*ivd
V(r)=sin| — —_— (A4)
L 7TJV+1(kV,qR)R\c"L
where k,, are roots of the equation J,(k,,R)=0 and
|\P(r)\2dr 1. All other temperature, modes have zero
contribution to the average temperature of the WGM
channel [see Eq. (6)].

Hence, we are looking for a solution of Eq. (5) having
the form,
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” dk,,
u@=§J¥%Mm%Mm3;, (A5)

f By, By AT =278y, = 51,) 8, 1 (A6)

The space-dependent parts of the function are

Jo(k,r) exp(ik,,z)
Jok,R)  Rym

,, (r)= : (A7)

where k,=8,/R, and B, is the pth root of equation
J1(8,)=0. We used the fact that Jo(r)==J1(r). It is also
important to note that 8,=mp if p>>1.

Substltutlng Eq. (A5) into Eq. (5), multiplying the
equation by CD R (r), and averaging over the volume, we
obtain

ﬂﬁp,km(t)

P +Dky il g, ()= Fp e (8), (A8)

2 _32.32
where k,, ,, =k, +k;, and

2

kp
(Fopp, OF, 4 () = 4w"DR

P mp

8t —t") 8k, —k,,)6,,
(A9)
To find u(¢) [see Eq. (6)], we note that

872 sin(k,,L/2) exp(ik,,L/2)
knL(B2L?-47%)  zR
(A10)

J%memmw=

where we have assumed that the radial temperature dis-
tribution function can be taken out of the integral if the
temperature does not change significantly at a range com-
parable with the spatial distribution of the WGM field [in
other words, we assume that J(k,r) =J(k,R) in the vi-
cinity of the WGM localization].

The spectral power density is

dk,, dk!,
p=v 2/3,[ f 2w E
872 sin(k,,L/12) |2
X e —
k,L(E2L? - 477

S;(Q) =

X f (@, By E+7)e dr. (A1)

To find the spectral density, we solve Eq. (A8) using the
Fourier transform. We decompose the time-dependent
variables as follows:
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i 04
77 s 12
Upp, (@)= f_x Upp, (Qe pyet (A12)

” o dQ
fp’km(t)zf ]:p,km(Q)eL tﬂ’ (A13)

where

(%, o () Fpr g7 (Q))
T2
=87°DR

Q= Q) ok, ~k}) S, 0. (Al4)

pVmP

The solution of Eq. (A8) is

= Fpr, Q) 0,40
u t)= —e" . Al5
T, ) J L i0+DEE," 27 (415)
It is easy to find now
@y 1, (O g (£ + 1)
172 kBTZ % ei!lr do
=47°DR X 8k, — k)6, —_
Cmep (e = ) pp f_x Q2+D2k;;’m 21
(A16)
Therefore, according to Eq. (A11),
kgT? 2D * dk,,
Sul@)=———— f =
CVap B s ), 2w
872 sin(k,,L/12) |2 1
X . (A17
k,L(kLL*-47%) | O+ D%, (AL7)

To check self-consistence of the obtained result we substi-
tute Eq. (A17) into Eq. (8):

* do
(AD)Z) = J S () —
= 21
kpT? 1 s * dk,,| 8m’sin(k,L/2) [? 1
_CmepRpS s L 2w | k,L(kLL? -4 | k2,

(A18)

To evaluate the sum in Eq. (A18), we assume that v>>1,
k> . =kp+ B/ R2~k2 +m°p?/R2(4R?/ w*L?>> 1), and find
that Eq (A18) coincides with Eq. (3).

APPENDIX B: SOLUTION OF THE
STOCHASTIC HEAT TRANSFER EQUATION
FOR A THIN CYLINDRICAL RESONATOR

Eigenfunctions of the heat transfer equation with zero
Neumann boundary conditions,

du
— -DAu=0, (B1)
ot
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— =0, B2
n (B2)

for a cylinder with radius R and height L can be pre-
sented in the form

Tmz )
u()= >, ﬁp,z,m(t)005< 7 )Jz(kz,pr)e*‘w, (B3)

p,l,m
where J;(k; ,7) is the Bessel function of the first kind, and
k;, are roots of the equation &J;(k;,r)/dr|g=0. Equation
(B1) describes the temperature modes of a WGM resona-
tor near heat balance. Only modes with /=0 and m=0,2
should be taken into account if we are interested in a
study of thermal properties of optical WGMs with field
distribution given by

( )\/E Ik, r) e
\Ii(r)_snn L V+1(quR)R\,’/Z, (B4)

where k,, are roots of the equation J,(k,,R)=0, and
I \\If(r)|2dr 1. All other temperature modes have Zero con-
tribution to the average temperature of the WGM channel
[see Eq. (6)].

Hence, we are looking for a solution of Eq. (5) having
the form

() (2, (B5)

ult)= >, @,
p,m

f q)p,mfbp/’m,dr: mm’gpp (BG)

The space-dependent parts of the function can be found
from

Jo(k 7") 1
JmJo(k,R)R\L

o 2mz \/E Jolk,r) 1 .
2 () = cos| == 7 dolkyR) R\L’ (B8)

where k,=8,/R, B, is the pth root of the equation J;(8,)
=0. We used the fact that J(r)=-J1(r). It is also impor-
tant to note that g,=mp if p>>1.

Substituting Eq. (B5) into Eq. (5), multiplying the
equation by ®,, ,,/(r), and averaging over the volume, we
obtain

P

,0(T) = (B7)

Ay 1 (2)

+DE2 L, () = Fp (), (B9)

where kl%,m=k12]+(7rm/L)2 and

kgT?DL
Fpr (")) =167
’ pCV,

m

<F};,m(t) 5(t_t) m,m’ pp

(B10)
To find u(t) [see Eq. (6)], we note that

1
f‘bp,o(r)l‘l’(r)l2dr: A W3=p, (B1l)
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f D, o)W (r)]*dr = - vB=p, (B12)

J7R2L’

where we have assumed that the temperature distribu-
tion function can be taken out of the integral if the tem-
perature does not change significantly at a range compa-
rable with the spatial distribution of the WGM field. The
spectral power density is

1

i > > (T ()il + D) ¥ 7.

p=8m=02J

Saz(Q) =

(B13)

To find the spectral density, we solve Eq. (B9) using the
Fourier transform. We decompose time-dependent vari-
ables as follows:

” 'mdQ
i @)= @, (Qe—, B14
up,m() f_x up,m( Je By ( )

) QtdQ
fp,m(t)zf_x Fpm(Q)e py (B15)

where
kT?DL
<~Fp,m(Q)‘7:p’,m’(Q )> = 32W2W5(Q - Q )5m,m’ 5p,p"

(B16)

The solution of Eq. (B9) is

Ty m(t) = f ’ Meimﬂ. (B17)
. 1Q+Dky,, 2
It is easy to find now
(T ()Tt + 7))
kgT?DL - e dQ
=167 p,p,f_x D2 (B18)
Therefore, according to Eq. (B13),
kT2 16D 1
Sa(Q) = > (B19)

pCVm R2 pSV2/3 m=0,2 QZ + Dzk;’m '

To check self-consistence of the obtained result, we sub-

stitute Eq. (B19) into Eq. (8):

kgT? 8 1

pCVmRszVz/g m=0,2 kg,m '
(B20)

” dQ
((AT);) = f Sa@)5—=

To evaluate the sums in Eq. (B20), we have assumed that
v>1 and find

2

1 1 1
2 —=R22 —2xR22—2=—

, (B21)
p=1*3 k122,0 p=1*3 By 1B, 8
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s 1 Rzi 1 RL
Lok,  wpP+ARYTLE 4

DP=V

(B22)

To evaluate the sum (B22), we also have assumed that
B,=mp for p>1, which is a good approximation if
4R?/m?L%>>1. We see, finally, that Eq. (B20) coincides
with Eq. (3) for R>>L.

APPENDIX C: SIMPLIFICATION OF THE
EXPRESSION FOR THE SPECTRAL POWER
DENSITY

We start from a realistic model and consider a calcium
fluoride resonator of radius R=0.3cm and thickness L
=0.01 cm. The resonator is driven with A\=1.55 um light,
so v=27Rn/\~2.7x10* and R/v*3=1.1x10"3. The
thermal diffusivity for CaF, is equal to D=3.6
X 1072 cm?/s, hence characteristic frequencies for the pro-
cess are D/R2=0.4s7!, D1v*3/R%2=3.2%x10°s"!, and D/L?
=360 s~1. The evaluated spectral density of the WGM fre-
quency deviation is shown in Fig. 2. To find the factor
kpT?/pCV,,=7x10"1* K2, have assumed that V,,=27RL
XR/v¥3=6x107% cm?.

Let us find an analytical approximation Eq. (B19). We
evaluate first two asymptotics:

EsT? R
Sa( ) | o<pirz = 2CV_ 12D (C1)
kpT? 32D 13
Sa(Q) | asapir2.psire = V. R0 (C2)

Using the asymptotics as well as the normalization con-
dition Eq. (3), we obtain Eq. (10). The comparison of the
approximation as well as the exact solution is shown in
Fig. 8.

APPENDIX D: RADIAL OSCILLATIONS OF A
SPHERE

Let us find the amplitude of the radial oscillations of a
sphere as well as the uncertainty of the amplitude origi-
nating from the thermal motion. For the sake of simplic-

-13 N
N
N,
e § NN
™ 10 16 ™N
3 N
8 N
SCI)E3 19 >
10 N
N \\
‘l
W
10% N

10° 10> 10° 10° 10"
Frequency, Hz
Fig. 8. (Color online) Spectral density of the frequency noise
S su/(Q) = a2S5(Q). The solid (black) curve is derived from the ex-

act solution in Eq. (B19). The dashed (red) curve is the analytical
approximation given by Eq. (10).
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ity, we consider the radial oscillations only. It means that
we approximate a solid-state spherical resonator with a
liquid one. Adiabatic longitudinal acoustic modes in a liq-
uid sphere are described by the Helmholtz equation,

AU+ Q2B5pU =0, (D1)

where U is the displacement, Bg is the adiabatic com-
pressibility of the medium, p is the density of the medium,
and Q is the frequency. It worth noting that v =(Bgp)~V2
is the speed of sound in the medium.

The solution of the equation under free boundary con-
ditions is

Vu’m,n,p(r)
U= —02/3 , (D2)
'SP
where
7T=]rL+1/2(‘()‘n,pr(ﬁsp)1/2) - simd
Ui p(T) = Uy 5 [0, r(Bap) FT P}'(cos Q)e*™?,
n.p

D3)

where r, 6, and ¢ are the spherical coordinates, u is a
scaling factor depending on m, n, and p; J,,1/9(2) is the
Bessel function of the first kind, P}'(cos 6) is an associated
Legendre function, n=0,1,2,3,..., m=0,1,2,3,..., and
p=1,2,3,.... Eigenfrequencies (),, are given by the
equation

Tn12(Qn pR(Bsp)V?) = 0. (D4)

Equations (D3) and (D4) have an especially simple form
for the purely radial modes (m=0 and n=0):

- sin(Qq,7(Bsp)?) )
u r)=U,y——————5—,
PP 0 (Bsp)
sin(Qg,R(Bsp)'?) = 0. (D6)
The solution of Eq. (D6) is
Q e D
= 0. 7
" R(Bsp)” o7

The radial displacement for each mode in this case is

o R? 4 |:Sin(Qo,pr(,BSP)l/2)

Pwp2ar|  Qo,r(Bsp) ] (D8)

The tensor of deformation has only three nonzero compo-
nents:

oU(p) U,(p)
Urr(p) = or Uﬂﬁ(p) = U¢¢(p) = .

(D9)

The internal energy of the mode p is
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P f (U,r(p) + Ugylp) + U¢¢(p))2dV
2B

R

=— | (Up) + Uplp) + Uyylp))*r*dr
BT 0

u?y R®
= (D10)
2p® Br

Assuming that (£,)=kpT/2, we obtain

kgTBr
R

(Up)*r) = (D11)

Summing over all the modes, we get

(R _ > (U0 _2kaTpr
R? R? x 9V, ’

(D12)

which nearly corresponds to Eq. (12).

APPENDIX E: SOLUTION OF EQUATION
(21) FOR A LOW-CONTRAST RESONATOR

The solution of Eq. (21) is similar to the solution of Eq.
(5). Substltutmg Eq. (A5) into Eq. (21), multiplying the
equation by <I’ R (r), and averaging over the volume, we
obtain

[%Zp,km(t)

ot Dol ()= T, (0), (E1)

2 _73,32
where k,, ,, =k, +k;, and

(s (OF 3y D =100 ) gz Pt =),

g1p.p'sm,m’) = f ()P, (0D, ()dr.

The solution of Eq. (E1) is

Fpr, Q) dO

i, )= ————ei®—, E2
pun(®) Linwkgm 27 (E2)

<ﬁ;,km(t)ﬁp/,k;n(t + 1))

Wyq, m< >J gl(p7p,9m7m,)einr dQ
zCz Pad | - Tias DEZ,)iQ+DE?, )2
(E3)

The spectral power density is
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84(Q) = ;C";’<Pabs>2 J f
pp' Y e -

dkm dkm’gl(p’p,’m;m’)g;(p’m)gZ(p”m,)
27 2m  (iQ+DE2,)(-iQ+DE2, )

’

ga(p,m) = f W (r)PD,, (r)dr. (E4)

This expression can be further simplified:

/4L dkm
S| ame

2
pSy2/3 —m/4L LQ + ka,m

Wy q.m <Pabs>L2

SQ—
{0~

(E5)

Let us first find the uncertainty of the mode temperature
due to the process:

* dQ
(AT)%) = J Sa(Q)Z—
% o

ho @y, mL2<Pabs> /AL JWML dk dk'
p*C? r pp' =123 J —w/AL war R +k2
hw,qm 7 RUP )
o (E6)
p?C? 32 DV?
It is also possible to find
ﬁw,, (P b >L3/2R5/2
Sa(0) = —5 - — (E7)

p202 VE 4 D2
We estimate SY2 (0)=,SY%(0)=10"" Hz"2 for a fluo-
rite resonator with R=0.3 cm and L=0.01 cm interrogated
with 1.55 um light of 1 mW power.

To derive the simplified expression for the spectral den-
sity, we assume that there is a single characteristic heat
transfer time in the system. Keeping in mind Eqgs. (E6)
and (E7), we obtain Eq. (23).

APPENDIX F: PONDEROMOTIVE
FLUCTUATIONS

To find the fluctuations of the resonator radius resulting
from the radiation pressure of the light traveling in the
resonator, we present the power circulating inside the
resonator as chw,,,q’mafa/fro, where 7y=27Rn/c. It
worth noting also that the ratio between the internal
power (P) circulating in the resonator and the external
pump power (P,) is

P 2‘)/R 1
5= ; (F1)
P, yr+vr,10(yR + YR,

where yg is the intrinsic loss rate of the resonator. We as-
sume that the resonator is overcoupled, i.e., yg>> g .
The annihilation operator a obeys the equation
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a+(Yr+iw,q,)a = yrage ran’ + \2ypf(t),  (F2)

where fluctuational force f(¢) has only one nonzero mo-
ment (f&)f1(t'))=8t-t"); ag is given by the expectation
value of the power (P)=fiw, , ,|ao|*/ 7, and yg stands for
the coupling width of the resonance (we assume that the
resonator is overcoupled). The steady-state solution of Eq.
(F2) is

—
* 12vpf(w) dow
. V4V .
a= aoe_m’v,q.mt + f '—e_lmt_, (FS)
o YR U@, — ) 2

where (f(w),f (0'))=278w-w’). Hence, we derive

[i0,0m®P) (* 27
OP(t) = ! f —(flo+ wv,q,m)
70 o YRTlW

. - do
+f (@, gm = w))e"‘“‘—ﬂ- (F4)

Presenting the deviation of the radius as

“ _dQ
AR(t) = f AR(Q)e ¥ — (F5)
= 2
we get
2 ho,, m(P)
AR(Q) = _ramy 7
m C 70
\"% f(Q + wv,q,m) +ﬁ(wv,q,m - Q) (F6)
Yr+1Q 02-02-ilQ ’

It is easy to find now

(AR%(1)) = (2m )2—hw”’q””<P>
B m*c

70
dQ/2
8 L} Ye+02(QF - 022+ TH0%
Therefore, the spectral density of the fluctuations and the

quadratic deviation of the radius can be represented as
those in Eqgs. (26) and (27).

F7)
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